Algorithmic Problem Solving

Johan Sannemo

2020

ii

This version of the book is a preliminary draft. Expect to
find typos and other mistakes. If you do, please report them
to jsannemo+book@jsannemo.se. A number of sections and
chapters are also unfinished, and a number of problems are
not yet uploaded to the judge — this are known issues.

Note: the linked problems are sometimes available on

Kattis (https://open.kattis.com/problems/PROBLEMID)
and sometimes on Kodsport.dev
(https://kodsport.dev/problems/PROBLEMID). In this

particular version, you should try the first one for most
chapters.

mailto:jsannemo+book@jsannemo.se

Contents

Preface ix
Reading this Book xi
I Preliminaries 1
1 Algorithms and Problems 3
1.1 Computational Problems 3
1.2 Algorithms oo 5
1.3 Programming Languages 8
1.4 PseudoCode 9
1.5 The KS.DevOnlineJudge 10
2 Programming in C++ 15
2.1 Development Environments 16
2.2 HelloWorld! 17
2.3 Variablesand Types 20
2.4 InputandOutput 25
2.5 Operators 26
2.6 IfStatements 28
27 ForLoops 31
2.8 WhileLoops. 32
2.9 Functions o o 33
2.10 SHTUCTUIES o vt ettt 37
2.11 AITays 40
2,12 Lambdas 42
2.13 The Preprocessor, . 43
2.14 Template. 44

iii

CONTENTS

iv

The C++ Standard Library 47
3.1 vectorl Lo e e e e e e e 47
3.2 lterators Lo 50
75 T [V 1= 1 51
3.4 stack e 52
3.5 priority queue.o 53
3.6 setandmap 54
3.7 Math.o 55
3.8 Algorithms o oL 57
3.9 Stringso 59
3.10 Input/Output 60
Implementation Problems 65
Time Complexity 83
5.1 The Complexity of Insertion Sort 83
5.2 Asymptotic Notation 86
5.3 NP-complete problems 92
5.4 Other Types of Complexities 92
5.5 The Importance of Constant Factors 92
5.6 Additional Exercises 93
5,7 ChapterNotes, . 94
Data Structures 97
6.1 Dynamic Arrays 97
6.2 Stacks 101
6.3 Queues 102
6.4 PriorityQueues 103
6.5 Bitsets 108
6.6 HashTables 110
Recursion 117
7.1 Recursive Definitions 0L 117
7.2 The Time Complexity of Recursive Functions 120
7.3 Choice 121
7.4 Multidimensional Recursion 126
7.5 Recursion vs. Iteration, 127

CONTENTS

8 Graph Theory 131
8.1 Graphs. 131
8.2 Representing Graphs L. 135
8.3 Breadth-FirstSearch 138
8.4 Depth-FirstSearch 143
85 Trees. 146
II Basics 147
9 Brute Force 149
9.1 Optimization Problems 149
9.2 Generateand Test 150
9.3 Backtracking oo 154
9.4 Fixing Parameters 162
9.5 MeetintheMiddle 165
9.6 ChapterNotes 170
10 Greedy Algorithms 171
10.1 Change-making Problem 171
10.2 Optimal Substructure 172
10.3 Locally Optimal Choices 173
10.4 Scheduling 175
10.5 Huffman Coding, ... 178
11 Dynamic Programming 181
11.1 BestPathinaDAG 181
11.2 Dynamic Programming 183
11.3 Multidimensional DPo 186
11.4 SubsetDP 188
11.5 DigitDP oo 190
11.6 Standard Problems 193
12 Divide and Conquer 201
12.1 Inductive Constructions 201
122 Merge Sort 208
12.3 BinarySearch o oL oL 210
12.4 Karatsuba’s algorithm 217

CONTENTS

13

14

15

16

17

vi

12.5 ChapterNotes 219
Data Structures 221
13.1 DisjointSets Lo 221
13.2 Range Queries oL 224
13.3 ChapterNotes 230
Graph Algorithms 231
14.1 Breadth-FirstSearch, ... 231
14.2 Depth-FirstSearch 236
14.3 Weighted ShortestPath 239
14.4 Minimum Spanning Tree 242
14.5 Chapter Notes 244
Maximum Flows 247
15.1 Flow Networks 247
152 Edmonds-Karp 249
15.3 Applicationsof Flows 252
15.4 Chapter Notes 254
Strings 255
16.1 Tries oo 255
16.2 String Matching 260
16.3 Chapter Notes 265
Combinatorics 267
17.1 The Addition and Multiplication Principles 267
17.2 Permutations Lo 270
17.3 Ordered Subsets 276
17.4 Binomial Coefficients 277
17.5 The Principle of Inclusion and Exclusion 286
17.6 The Pigeon Hole Principle 288
17.7 Invariants oL o 288
17.8 Monovariants L 290
17.9 Chapter Notes 205

CONTENTS

18

19

20

21

Game Theory

18.1 Mathematical Techniques
18.2 The Graph Game

Number Theory

19.1 Divisibility
19.2 Prime Numbers
19.3 The Euclidean Algorithm
19.4 Modular Arithmetic
19.5 Chinese Remainder Theorem
19.6 Euler’s totient function

Competitive Programming Strategy

Papers

21.1 Paper3 oo

III Advanced Topics

22

23

24

Data Structures

22.1 Self-Balancing Trees
22.2 Persistent Data Structures
22.3 Heavy-Light Decomposition

Combinatorics

23.1 Convolutions

Strings

24.1 Hashing
24.2 Dynamic Hashing

Discrete Mathematics

A Logic L L.
A2 Setsand Sequences
A.3 SumsandProducts

297

357

.......... 357
.......... 357
.......... 357

359

.......... 359

361

.......... 361
.......... 370

vii

CONTENTS

Hints
Solutions
Bibliography

Index

viii

381
383
387

390

Preface

Algorithmic problem solving is the art of formulating efficient methods that
solve problems of a mathematical nature. From the many numerical algorithms
developed by the ancient Babylonians to the founding of graph theory by Euler,
algorithmic problem solving has been a popular intellectual pursuit during
the last few thousand years. For a long time, it was a purely mathematical
endeavor with algorithms meant to be executed by hand. During the recent
decades algorithmic problem solving has evolved. What was mainly a topic of
research became a mind sport known as competitive programming. As a sport
algorithmic problem solving rose in popularity with the largest competitions
attracting tens of thousands of programmers. While its mathematical counterpart
has a rich literature, there are only a few books on algorithms with a strong
problem solving focus.

The purpose of this book is to contribute to the literature of algorithmic
problem solving in two ways. First of all, it tries to fill in some holes in
existing books. Many topics in algorithmic problem solving lack any treatment
at all in the literature — at least in English books. Much of the content is
instead documented only in blog posts and solutions to problems from various
competitions. While this book attempts to rectify this, it is not to detract from
those sources. Many of the best treatments of an algorithmic topic I have seen
are as part of a well-written solution to a problem. However, there is value in
completeness and coherence when treating such a large area. Secondly, I hope
to provide another way of learning the basics of algorithmic problem solving by
helping the reader build an intuition for problem solving. A large part of this
book describes techniques using worked-through examples of problems. These
examples attempt not only to describe the manner in which a problem is solved,
but to give an insight into how a thought process might be guided to yield the
insights necessary to arrive at a solution.

This book is different from pure programming books and most other
algorithm textbooks. Programming books are mostly either in-depth studies of
a specific programming language or describe various programming paradigms.
A single language is used in this book — C++. The text on C++ exists for the

ix

CONTENTS

sole purpose of enabling those readers without prior programming experience to
implement the solutions to algorithm problems. Such a treatment is necessarily
minimal and teach neither good coding style nor advanced programming concepts.
Algorithm textbooks teach primarily algorithm analysis, basic algorithm design,
and some standard algorithms and data structures. They seldom include as much
problem solving as this book does. The book also falls somewhere between
the practical nature of a programming book and the heavy theory of algorithm
textbooks. This is in part due to the book’s dual nature of being not only about
algorithmic problem solving, but also competitive programming to some extent.
As such there is more real code and efficient C++ implementations of algorithms
included compared to most algorithm books.

Acknowledgments. First and foremost, thanks to Per Austrin who provided
much valuable advice and feedback during the writing of this book. Thanks to
Simon and Mérten who have competed with me for several years as Omogen
Heap. A lot of the knowledge in this book has its roots in you. Finally, thanks to
several others who have read through drafts and caught numerous mistakes of
my own.

Reading this Book

This book consists of three parts. The first part contains some preliminary
background, such as algorithm analysis and programming in C++. With an
undergraduate education in computer science most of these chapters are probably
familiar to you. It is recommended that you at least skim through the first part
since the remainder of the book assumes you know the contents of the preliminary
chapters.

The second part makes up most of the material in the book. Some of it
should be familiar if you have taken a course in algorithms and data structures.
The take on those topics is a bit different compared to an algorithms course. We
therefore recommend that you read through even the parts you feel familiar with
— in particular those on the basic problem solving paradigms, i.e. brute force,
greedy algorithms, dynamic programming and divide & conquer. The chapters
in this part are structured so that a chapter builds upon only the preliminaries
and previous chapters to the largest extent possible.

In the third part you will find the advanced topics. These are extensions of
the topics from the second part. This part is less cohesive, with few dependencies
between chapters. You can to a larger degree choose what topics you wish to
study, though most of them depend on several of the chapters from the basics.

At the end of the book you can find an appendix with some mathematical
background, together with hints and solutions for selected exercies.

When reading this book, know that every problem and technique was chosen
with care; every step on the way in a solution added to provide value. Sometimes,
this can make the book feel boring — a solution can take a long time tracing out
the intuition behind some small step, or show partial solutions that are unused
in the final result. At other times, missing a single sentence can leave you with a
crucial gap in your knowledge. I have tried to make sure that every sentence
written is important; when the book is long-winding, trust that it is useful, and
when difficult, endure to make sure you attain the deep understanding I hope
this book will be able to provide.

Similarly, the exercises are meant as attempts for you to construct some
crucial knowledge on your own. There may be fewer end-of-chapter exercises

Xi

CONTENTS

than you might be used to in a textbook, and more exercises inlined in chapters.
This is because we expect you to solve all exercises as part of the reading of the
book. Sometimes, the text after an exercise will assume that you read and solved
the exercise. The lecture analogue would be the lecturer pausing to ask the class
a question; only giving an answer if none is provided by the class. Since this is
a book, you are blessed with unlimited time to think in contrast to the lecture
setting, where you typically get on the order of minutes. Some exercises took
the author on the order of hours to solve at first, so do not feel disparaged if you
find them difficult. At the back of the book, you find hints and solutions for
selected exercises. If you fail to solve an exercise, first check if it has a hint, and
give it another attempt.

This book can also be used to improve your competitive programming
skills. Some parts are unique to competitive programming (in particular
Chapter 20 on contest strategy). This knowledge is extracted into competitive
tips:

Competitive Tip
A competitive tip contains some information specific to competitive programming.

These can be safely ignored if you are interested only in the problem solving aspect
and not the competitions.

The book often refers to exercises from the Kodsport.dev online judge:

Problem o.1
Problem Name — problemid

The URL of such a problem is https://kodsport.dev/problems/problemid.

The C++ code in this book makes use of some preprocessor directives from
a template. Even if you are familiar with C++ (or do not wish to learn it) we
still recommend that you read through this template (section 2.14) to better
understand the C++ code in the book.

Xii

https://kodsport.dev/problems/problemid
https://kodsport.dev/problems/problemid

Part I

Preliminaries

1 Algorithms and Problems

The greatest technical invention of the last century was probably the digital
general purpose computer. It was the start of the revolution which provided us
with the Internet, smartphones, tablets, and the computerization of society.

To harness the power of computers we use programming. Programming is
the art of developing a solution to a computational problem, in the form of a set
of instructions that a computer can execute. These instructions are what we call
code, and the language in which they are written a programming language. The
abstract method that such code describes is what we call an algorithm.

The aim of algorithmic problem solving is thus to, given a computational
problem, devise an algorithm that solves it. One does not necessarily need to
complete the full programming process (i.e. write code that implements the
algorithm in a programming language) to enjoy solving algorithmic problems.
However, it often provides more insight and trains you at finding simpler
algorithms to problems.

In this chapter, we begin our journey into algorithmic problem solving by
taking a closer look at these concepts and showing a solution to a common
problem.

1.1 Computational Problems

A computational problem generally consists of two parts. First, it needs an
input description, such as “a sequence of integers”, “a text string”, or some other
kind of mathematical object. Using this input, we have a goal which we want
to accomplish defined by an output description. For example, a computational
problem might require us to sort a given sequence of integers. This particular

problem is called the Sorting Problem:

CHAPTER 1. ALGORITHMS AND PROBLEMS

Sorting
Your task is to sort a sequence of integers in ascending order, i.e. from the
lowest to the highest.

Input
The input is a sequence of N integers ay, ai, ..., AN—1-

Output
Output a permutation a’ of the sequence a, such that @) < a} < .. < a}_,.

A particular input to a computational problem is called an instance of the
problem. To the sorting problem, the sequence 3,6, 1,—1,2,2 would be an
instance. The correct output for this particular problem would be —1, 1,2,2,3, 6.

Exercise 1.1. If you were given cards with 5 different integers 1 and 1000000
written on them, how would you sort them in ascending order? How would your
approach change if you had 30 integers? 10007 1000 000?

Some variations of this problem format appears later (such as problems
without inputs) but in general this is what the problems look like.

Competitive Tip

Problem statements sometimes contain huge amounts of text. Skimming through the
input and output sections before any other text in a problem can often give you a quick
idea about its topic and difficulty. This helps in determining what problems to solve
first when posed with a large number of problems and little time.

Exercise 1.2. What are the input and output descriptions for the following
computational problems?

1) Compute the greatest common divisor (see Def. 19.5, page 319 if you
are not familiar with the concept) of two numbers.

2) Find aroot (i.e. a zero) of a polynomial.

3) Multiply two numbers.

Exercise 1.3. Consider the following problem. I am thinking of an integer
between 1 and 100. Your task is to find this number by giving me integers, one
at a time. I will tell you whether the given integer is higher, lower or equal to x.
This is an interactive, or online, computational problem. How would you
describe the input and output to it? Why do you think it is called interactive?

4

1.2. ALGORITHMS

1.2 Algorithms

Algorithms are solutions to computational problems. They define methods
that use the input to a problem in order to produce the correct output. A
computational problem can have many solutions. Efficient algorithms to solve
the sorting problem form an entire research area! Let us look at one possible
sorting algorithm, called selection sort, as an example.

Selection Sort
We construct the answer, the sorted sequence, iteratively one element at a
time, starting with the smallest.

Assume that we have chosen and sorted the K smallest elements of the
original sequence. Then, the smallest unchosen element remaining in that
sequence must be the (K + 1)’st smallest element of the original sequence.
Thus, by finding the smallest element among those that remain we know what
the (K + 1)’st element of the sorted sequence is. By appending this element
to the already sorted K smallest elements we get the sorted K + 1 smallest
elements of the output.

If we repeat this process N times, the result is the N numbers of the
original sequence, but sorted. []

You can see this algorithm performed on our previous example instance (the
sequence 3,6, 1, —1,2,2) in Figures 1.1a-1.1f.

So far, we have been vague about what exactly an algorithm is. Looking
at our Selection Sort example, we do not have any particular structure or rigor
in the description of our method. There is nothing inherently wrong with
describing algorithms this way. It is easy to understand and gives the writer an
opportunity to provide context as to why certain actions are performed, making
the correctness of the algorithm more obvious. The main downsides of such a
description are ambiguity and a lack of detail.

Until an algorithm is described in sufficient detail, it is possible to accidentally
abstract away operations we may not know how to perform behind a few English
words. As a somewhat contrived example, our plain text description of selection
sort includes actions such as “choosing the smallest number of a sequence”.
While such an operation may seem very simple to us humans, algorithms are
generally constructed with regards to some kind of computer. Unfortunately,
computers can not map such English expressions to their code counterparts yet.
Instructing a computer to execute an algorithm thus requires us to formulate our

CHAPTER 1. ALGORITHMS AND PROBLEMS

ENEEENENENER

(a) Originally, we start out with the unsorted sequence (3,6, 1,-1,2,2).

ENERENENENEN

(b) The smallest element of the sequence is —1, so this is the first element of the sorted sequence.

IEN NN N R ERER

(c) We find the next element of the output by removing the —1 and finding the smallest remaining
element - in this case 1.

[l ez s e] 2]

(d) Here, there is no unique smallest element. We can choose any of the two 2’s in this case.

1] 1 | 2 2 || 3 6
1] 1 | 2 2 3 || o

(e) The next two elements chosen will be a2 and a 3.

EIRNEREE NN

(f) Finally, we choose the last remaining element of the input sequence - the 6. This concludes
the sorting of our sequence.

Figure 1.1: An example execution of selection sort.

algorithm in steps small enough that even a computer knows how to perform
them. In this sense, a computer is rather stupid.

The English language is also ambiguous. We are sloppy with references
to “this variable” and “that set”, relying on context to clarify meaning for us.
We use confusing terminology and frequently misunderstand each other. Real
code does not have this problem. It forces us to be specific with what we mean.
However, as all programmers know, we often manage to construct highly specific
algorithms that do the wrong thing due to our own erronous thought processes.

We will generally describe our algorithms in a representation called pseudo
code (Section 1.4), accompanied by an online exercise to implement the code.
Sometimes, we will instead give explicit code that solves a problem. This will
be the case whenever an algorithm is very complex, or care must be taken to
make the implementation efficient. The goal is that you should get to practice
understanding pseudo code, while still ending up with correct implementations

6

1.2. ALGORITHMS

of the algorithms (thus the online exercises).

Exercise 1.4. Do you know any algorithms, for example from school? (Hint:
you use many algorithms to solve certain arithmetic and algebraic problems,
such as those in Exercise 1.2.)

Exercise 1.5. In Exercise 1.1, you were asked to come up with your own
approaches to the sorting problem. Attempt to write them down formally as
descriptions of algorithms.

Exercise 1.6. Construct an algorithm that solves the guessing problem in
exercise 1.3 using as few questions as possible. How many questions does it
use?

Correctness

One subtle, albeit important, point that we glossed over is what it means for an
algorithm to actually be correct.

There are two common notions of correctness — partial correctness and total
correctness. Partial correctness requires an algorithm to, upon termination, have
produced an output that fulfills all the criteria laid out in the output description.
Total correctness additionally requires an algorithm to finish within finite time.
When we talk about correctness of our algorithms later on, we generally focus on
the partial correctness. Termination is instead proved implicitly, as we consider
a more granular measure of efficiency (called time complexity, in Chapter 5) than
just finite termination. This measure implies the termination of the algorithm,
completing the proof of total correctness.

Proving that the selection sort algorithm finishes in finite time is quite easy.
It performs one iteration of the selection step for each element in the original
sequence (which is finite). Furthermore, each such iteration can be performed in
finite time by looking at each remaining element of the selection when finding
the smallest one. The remaining sequence is a subsequence of the original one
and is therefore also finite.

Proving that the algorithm produces the correct output is a bit more difficult
to prove formally. The main idea behind a formal proof is contained within our
description of the algorithm itself.

While this definition seems clear enough — our algorithm should simply do
what the problem asks of it! — we will compromise on both conditions at later
points in the book. Generally, we are satisfied with an algorithm terminating in

CHAPTER 1. ALGORITHMS AND PROBLEMS

expected finite time or answering correctly with, say, probability 0.75 for every
input. Similarly, we are sometimes happy to find an approximate solution to a
problem. What this means more concretely will become clear in due time when
we study such algorithms.

Competitive Tip

Proving your algorithm correct is sometimes quite difficult. In a competition, a correct
algorithm is correct even if you cannot prove it. If you have an idea you hink is correct
it may be worth testing. This is not a strategy without problems though, since it makes
distinguishing between an incorrect algorithm and an incorrect implementation even
harder.

Exercise 1.7. Prove the correctness of your algorithm to the guessing problem
from Exercise 1.6 and your sorting algorithms from Exercise 1.5.

Exercise 1.8. Why would an algorithm that is correct with e.g. probability 0.75
still be very useful to us?

Why is it important that such an algorithm is correct with probability 0.75
on every problem instance, instead of always being correct for 75% of all cases?

1.3 Programming Languages

The purpose of programming languages is to formulate methods at a level of
detail where a computer could perform them. While we in textual descriptions
of methods are often satisfied with describing what we wish to do, programming
languages require considerably more constructive descriptions. Computers are
quite basic creatures compared to us humans. They only understand a very
limited set of instructions such as adding numbers, multiplying numbers, or
moving data around within its memory. The syntax of programming languages
often seems a bit arcane at first, but it grows on you with coding experience.
To complicate matters further, programming languages themselves define
a spectrum of expressiveness. On the lowest level, programming deals with
electrical current in your processor. Current above or below a certain threshold is
used to represent the binary digits 0 and 1. Above these circuit-level electronics
lies a processor’s own programming, often called microcode. Using this, a
processor implements machine code, such as the x86 instruction set. Machine
code is often written using a higher-level syntax called Assembly. While some
code is written in this rather low-level language, we mostly abstract away details
of them in high-level languages such as C++ (this book’s language of choice).

N

@R

1.4. PSseubO CODE

This knowledge is somewhat useless from a problem solving standpoint,
but intimate knowledge of how a computer works is of high importance in
software engineering, and is occasionally helpful in programming competitions.
Therefore, you should not be surprised about certain remarks relating to these
low-level concepts.

These facts also provide some motivation for why we use something called
compilers. When programming in C++ we can not immediately tell a computer
to run our code. As you now know, C++ is code at a higher level than what
the processor of a computer can run. A compiler takes care of this problem by
translating our C++ code into machine code that the processor knows how to
handle. It is a program of its own and takes the code files we write as input and
produces executable files that we can run on the computer. The process and
purpose of a compiler is somewhat like what we do ourselves when translating
a method from English sentences or our own thoughts into the lower level
language of C++.

1.4 Pseudo Code

Somewhere in between describing algorithms in English text and in a pro-
gramming language we find something called pseudo code. As hinted by its
name it is not quite real code. The instructions we write are not part of the
programming language of any particular computer. The point of pseudo code
is to be independent of the computer it is implemented on. Instead, it tries
to convey the main points of an algorithm in a detailed manner so that it can
easily be translated into any particular programming language. Secondly, we
sometimes fall back to the liberties of the English language. At some point, we
may decide that “choose the smallest number of a sequence” is clear enough for
our audience.

With an explanation of this distinction in hand, let us look at a concrete
example of pseudo code. The honor of being an example again falls upon
selection sort, now described in pseudo code:

: procedure SELECTIONSORT(sequence A)

Let A’ be an empty sequence
while A is not empty do
minlndex < 0
for every element A; in A do

e 2 3 S

CHAPTER 1. ALGORITHMS AND PROBLEMS

if A; < Apninindex then
minlndex «— i
Append Aminlndex to A’
Remove A, ininder from A

return the sequence A’

Pseudo code reads somewhat like our English language variant of the
algorithm, except the actions are broken down into much smaller pieces. Most
of the constructs of our pseudo code are more or less obvious. The notation
variable < value is how we denote an assignment in pseudo code. For those
without programming experience, this means that the variable named variable
now takes the value value. Pseudo code appears when we try to explain some
part of a solution in great detail but programming language specific aspects
would draw attention away from the algorithm itself.

Competitive Tip

In team competitions where a team only have a single computer, a team will often
have solved problems waiting to be coded. Writing pseudo code of the solution to one
of these problems while waiting for computer time is an efficient way to parallelize
your work. This can be practiced by writing pseudo code on paper even when you are
solving problems by yourself.

Exercise 1.9. Write pseudo code for your algorithm to the guessing problem
from Exercise 1.6.

1.5 The KS.Dev Online Judge

Most of the exercises in this book exist as problems on the KS.Dev web system.
You can find it at https://kodsport.dev. KS.Dev is a so called online judge. It
contains a large collection of computational problems, and allows you to submit
a program you have written that purports to solve a problem. KS.Dev will then
run your program on a large number of predetermined instances of the problem
called the problem’s test data.

Problems on an online judge include some additional information compared
to our example problem. Since actual computers only have a finite amount of
time and memory, the amount of these resources available to our programs are
limited when solving an instance of a problem. This also means that the size of
inputs to a problem need to be constrained as well, or else the resource limits for

10

https://kodsport.dev

1.5. THE KS.DEV ONLINE JUDGE

a given problem would not be obtainable — an arbitrarily large input generally
takes arbitrarily large time to process, even for a computer. A more complete
version of the sorting problem as given in a competition could look like this:

Sorting
Time: 1s, memory: 1MB
Your task is to sort a sequence of integers in ascending order, i.e. from the
lowest to the highest.

Input
The input is a sequence of N integers (1 < N < 1000) ag, ay, ..., an-1 (|a;| <
10%).

Output

Output a permutation a” of the sequence a, such that a < a] < ... < a}_,.

If your program exceeds the allowed resource limits (i.e. takes too much
time or memory), crashes, or gives an invalid output, KS.Dev will tell you so
with a rejected judgment. There are many kinds of rejected judgments, such as
Wrong Answer, Time Limit Exceeded, and Run-time Error. These mean your
program gave an incorrect output, took too much time, and crashed, respectively.
Assuming your program passes all the instances, it will be be given the Accepted
judgment.

Note that getting a program accepted by KS.Dev is not the same as having a
correct program — it is a necessary but not sufficient criterion for correctness.
This is also a fact that can sometimes be exploited during competitions by
writing a knowingly incorrect solution that one thinks will pass all test cases
that the judges of the competitions designed.

We strongly recommend that you get a (free) account on KS.Dev so that you
can follow along with the book’s exercises.

Exercise 1.10. Register an account on KS.Deyv.
Many other online judges exists, such as:
» Kattis (https://open.kattis.com)
* Codeforces (http://codeforces.com)

* CSAcademy (https://csacademy.com)

11

https://open.kattis.com
http://codeforces.com
https://csacademy.com

CHAPTER 1. ALGORITHMS AND PROBLEMS

¢ AtCoder (https://atcoder.jp)
» TopCoder (https://topcoder.com)

¢ HackerRank (https://hackerrank.com)

Chapter Exercises

Exercise 1.11. Pick two sorting algorithms from Wikipedia’s list of sorting
algorithms: https://en.wikipedia.org/wiki/Category:Sorting_algorithms. Try
to understand them and their proof of correctness. Use them by hand to sort the
integers 5,1,2,7,5,6,2,9.

Exercise 1.12. Consider the following problems:

Palindrome
A word is a palindrome if it reads the same forwards and backwards, for example
tacocat, madam, Or abba. Determine if a word is a palindrome.

Input
The input consists of a single word, containing only lowercase letters a-z.

Output
Output yes if the word is a palindrome and no otherwise.

Primality
We call an integer n > 1 a prime if its only positive divisors are 1 and n.
Determine if a particular integer is a prime.

Input
The input consists of a single integer n > 1.

Output
Output yes if the number n was a prime and no otherwise.

For each of them,
1. devise an algorithm to solve it,
2. formalize the algorithm and write it down in pseudo code, and

3. prove the correctness of the algorithm.

12

https://atcoder.jp
https://topcoder.com
https://hackerrank.com
https://en.wikipedia.org/wiki/Category:Sorting_algorithms

1.5. THE KS.DEV ONLINE JUDGE

Chapter Notes

The introductions given in this chapter are very bare, mostly stripped down to
what you need to get by when solving algorithmic problems.

Many other books delve deeper into the theoretical study of algorithms
than we do, in particular regarding subjects not relevant to algorithmic problem
solving. Introduction to Algorithms [7] is a rigorous introductory text book on
algorithms with both depth and breadth.

For a gentle introduction to the technology that underlies computers, CODE
[23] is a well-written journey from the basics of bits and bytes all the way up to
assembly code and operating systems. It requires no knowledge of programming
to read.

13

CHAPTER 1. ALGORITHMS AND PROBLEMS

14

2 Programmingin C++

In this chapter we learn the basics of the C++ programming language. This
language is the most common programming language within the competitive
programming community for a few reasons (aside from C++ being a popular
language in general). Programs coded in C++ are generally somewhat faster
than those written in most other competitive programming languages. There are
also many routines in the accompanying standard code libraries that are useful
when implementing algorithms.

Of course, no language is without downsides. C++ is a bit difficult to learn
as your first programming language to say the least. Its error management is
unforgiving, often causing erratic behavior in programs instead of crashing with
an error. Programming certain things become quite verbose, compared to many
other languages.

After bashing the difficulty of C++, you might ask if it really is the best
language in order to get started with algorithmic problem solving. While
there certainly are simpler languages we believe that the benefits outweigh the
disadvantages in the long term even though it demands more from you as a
reader. Either way, it is definitely the language we have the most experience of
teaching problem solving with.

When you study this chapter, you will see a lot of example code. Type
this code and run it. We can not really stress this point enough. Learning
programming from scratch — in particular a complicated language such as C++ —
is not possible unless you try the concepts yourself. Additionally, we strongly
recommend that you do every exercise in this chapter, even moreso than in the
other chapters.

Finally, know that our treatment of C++ is minimal. We do not explain all
the details behind the language, nor do we teach good coding style or general
software engineering principles. In fact, we frequently make use of bad coding
practices. If you want to delve deeper, you can find more resources in the chapter
notes.

15

CHAPTER 2. PROGRAMMING IN C++

2.1 Development Environments

Before we get to the juicy parts of C++ you need to install a compiler for C++
and (optionally) a code editor.

We recommend the editor Visual Studio Code. The installation procedure
varies depending on what operating system you use. We provide them for
Windows, Ubuntu and macOS. If you choose to use some other editor, compiler
or operating system you must find out how to perform the corresponding actions
(such as compiling and running code) yourself.

Note that instructions like these tend to rot, with applications disappearing
from the web, operating systems changing names, and so on. In that case, you
are on your own and have to find instructions by yourself.

Windows

Installing a C++ compiler is somewhat complicated in Windows. We recommend
installing the Mingw-w64 compiler from http://www.mingw-w64.0rg/.

After installing the compiler, you can download the installer for Visual
Studio Code from https://code.visualstudio.com/.

Ubuntu

On Ubuntu, or similar Linux-based operating systems, you need to install
the GCC C++ compiler, which is the most popular compiled for Linux-based
systems. It is called g++ in most package managers and can be downloaded with
the command sudo apt-get install g++. After installing the compiler, you can
download the installer for Visual Studio Code from https://code.visualstudio.
com/. Choose the deb installer.

macOS

When using macOS, you first need to install the Clang compiler by installing
Xcode from the Mac App Store. This is also a code editor, but the compiler is
bundled with it.

After installing the compiler, you can download the installer for Visual
Studio Code from https://code.visualstudio.com/. It is available as a normal
macOS package for installation.

16

http://www.mingw-w64.org/
https://code.visualstudio.com/
https://code.visualstudio.com/
https://code.visualstudio.com/
https://code.visualstudio.com/

2.2. HELLO WORLD!

Installing the C++ tools

Now that you have installed the compiler and Visual Studio Code, you need
to install the C++ plugin for Visual Studio Code. You can do this by open-
ing the program, launching Quick Open (using Ctrl+P), typing ext install
ms-vscode.cpptools, and pressing Enter. Then, launch Quick Open again, but
this time type ext install formulahendry.code-runner instead.

The tools need to be configured a bit. Press Ctrl+Shift+P and serach for
Open Settings. Select Open Settings (JSON) in the list. Here, enter the following
configuration:

{
"code-runner.runInTerminal": true,
"code-runner.saveAllFilesBeforeRun": true,
"code-runner.executorMap": {
"cpp": "cd $dir && g++ $fileName -fsanitize=undefined,address -o <=
$fileNameWithoutExt -std=c++17 -Wall && dirfileNameWithoutExt"

}

Note that the line ending with «— denotes that the text on the following line
should be on the same line.
Then, restart your editor again.

2.2 Hello World!

Now that you have a compiler and editor ready, it is time to learn the basic
structure of a C++ program. The classical example of a program when learning
a new language is to print the text Hello World!. We also solve our first KS.Dev
problem in this section.

Exercise 2.1. Throughout this chapter, you will learn many concepts within
C++. We recommend that you create a notebook (for example in a file on your
computer) where you write down how the different constructs are used when
programming to keep as a reference for later.

Start by opening Visual Studio Code and create a new file by going to File
= New File. Save the file as hello.cpp by pressing Ctrl+S. Make sure to save it
somewhere you can find it.

Now, type the code from Listing 2.1 into your editor.

17

L T Y A O

CHAPTER 2. PROGRAMMING IN C++

Listing 2.1 Hello World!

#include <iostream>
using namespace std;

int main() {
// Print Hello World!
cout << "Hello World!" << endl;

}

To run the program in Visual Studio Code, you press Ctrl+Alt+N. A tab
below your code named TERMINAL containing the text Hello World! should appear.
If no window appears, you probably mistyped the program.

Coincidentally, KS.Dev happens to have a problem whose output description
dictates that your program should print the text Hello World!. How convenient.
This is a great opportunity to get familiar with KS.Dev.

Problem 2.1
Hello World! — hello

When you submit your solution, KS.Dev grades it and give you its judgment.
If you typed everything correctly, KS.Dev tells you it got Accepted. Otherwise,
you probably got Wrong Answer, meaning your program output the wrong text
(and you mistyped the code).

Now that you have managed to solve the problem, it is time to talk a bit
about the code you typed.

The first line of the code,

#include <iostream>

is used to include the iostream — input and output stream — file from the so-called
standard library of C++. The standard library is a large collection of ready-to-use
algorithms, data structures, and other routines which you can use when coding.
For example, there are sorting routines in the C++ standard library, meaning you
do not need to implement your own sorting algorithm when coding solutions.

Later on, we will see other useful examples of the standard library and
include many more files. The iostream file contains routines for reading and
writing data to your screen. Your program used code from this file when it
printed Hello World! upon execution.

18

https://kodsport.dev/problems/hello

2.2. HELLO WORLD!

On some platforms, there is a special include file called bits/stdc++.h. This
file includes the entire standard library. You can check if it is available on your
platform by including it using
#include <bits/stdc++.h>
in the beginning of your code. If your program still compiles, you can use this
and not include anything else. By using this line you do not have to care about
including any other files from the standard library which you wish to use.

The third line,
using namespace std;
tells the compiler that we wish to use code from the standard library. If we
did not use it, we would have to specify this every time we used code from the
standard library later in our program by prefixing what we use from the library
by std:: (for example std: : cout).

The fifth line defines our main function. When we instruct the computer to
run our program the computer starts looking at this point for code to execute.
The first line of the main function is thus where the program starts to run with
further lines in the function executed sequentially. Later on we learn how to
define and use additional functions as a way of structuring our code. Note that
the code in a function — its body — must be enclosed by curly brackets. Without
them, we would not know which lines belonged to the function.

On line 6, we wrote a comment
// Print Hello World!

Comments are explanatory lines which are not executed by the computer. The
purpose of a comment is to explain what the code around it does and why. They
begin with two slashes // and continue until the end of the current line.

It is not until the seventh line that things start happening in the program. We
use the standard library utility cout to print text to the screen. This is done by
writing e.g.:
cout << "this is text you want to print. ";
cout << "you can " << "also print " << "multiple things. ";

cout << "to print a new line" << endl << "you print endl" << endl;
cout << "without any quotes" << endl;

Lines that do things in C++ are called statements. Note the semi colon at
the end of the line! Semi colons are used to specify the end of a statement, and
are mandatory.

Exercise 2.2. Must the main function be named main? What happens if you
changed main to something else and try to run your program?

19

CHAPTER 2. PROGRAMMING IN C++

Exercise 2.3. Play around with cout a bit, printing various things. For example,
you can print a pretty haiku.

2.3 Variables and Types

The Hello World! program is boring. It only prints text — seldom the only
necessary component of an algorithm (aside from the Hello World! problem on
KS.Dev). We now move on to a new but hopefully familiar concept.

When we solve mathematical problems, it often proves useful to introduce
all kinds of names for known and unknown values. Math problems often deal
with classes of N students, ice cream trucks with velocity v, km/h, and candy
prices of peanay $/kg.

This concept naturally translates into C++ but with a twist. In most
programming languages, we first need to say what fype a variable has! We do
not bother with this in mathematics. We say “let x = 57, and that is that. In
C++, we need to be a bit more verbose. We must write that “I want to introduce
a variable x now. It is going to be an integer — more specifically, 5”. Once we
have decided what kind of value x will be (in this case integer) it will always be
an integer. We cannot just go ahead and say “oh, I've changed my mind. x = 2.5
now!” since 2.5 is of the wrong type (a decimal number rather than an integer).

Listing 2.2 Variables

#include <iostream>
using namespace std;

int main() {
int five = 5;
cout << five << endl;
int seven = 7;
cout << seven << endl;
five = seven + 2; // =7 + 2 =9
cout << five << endl;
seven = 0;
cout << five << endl; // five is still 9
cout << 5 << endl; // we print the integer 5 directly

Another major difference is that variables in C++ are not tied to a single
value for the entirety of their lifespans. Instead, we are able to modify the value
which our variables have using something called assignment. Some languages

20

2.3. VARIABLES AND TYPES

does not permit this, preferring their variables to be immutable.

In Listing 2.2 we demonstrate how variables are used in C++. Type this
program into your editor and run it. What is the output? What did you expect
the output to be?

The first time we use a variable in C++ we must decide what kind of values
it may contain. This is called declaring the variable of a certain type. For
example the statement

int five = 5;

declares an integer variable five and assigns the value 5 to it. The int part is
C++ for integer and is what we call a type. After the type, we write the name of
the variable — in this case five. Finally, we may assign a value to the variable.
Note that further use of the variable never include the int part. We declare the
type of a variable once and only once.

Later on in Listing 2.2 we decide that 5 is a somewhat small value for
a variable called five. We can change the value of a variable by using the
assignment operator — the equality sign =. The assignment

five = seven + 2;

states that from now on the variable five should take the value given by the
expression seven + 2. Since (at least for the moment) seven has the value 7 the
expression evaluates to 7+ 2 = 9. Thus five will actually be 9, explaining the
output we get from line 12.

On line 14 we change the value of the variable seven. Note that line 15
still prints the value of five as 9. Some people find this model of assignment
confusing. We first performed the assignment five = seven + 2;, but the value
of five did not change with the value of seven. This is mostly an unfortunate
consequence of the choice of = as operator for assignment. One could think that
“once an equality, always an equality” — that the value of five should always be
the same as the value of seven + 2. This is not the case. An assignment sets
the value of the variable on the left hand side to the value of the expression on
the right hand side at a particular moment in time, nothing more.

The snippet also demonstrates how to print the value of a variable on the
screen — we cout it the same way as with text. This also clarifies why text needs
to be enquoted. Without quotes, we can not distinguish between the text string
“hi" and the variable hi.

21

CHAPTER 2. PROGRAMMING IN C++

Note that it is possible to declare a variable without assigning a value to
it. When this is done, the variable may receive a random value instead. This is
useful when you immediately want to assign a value to variable that the user can
input (see the next Section 2.4).

Exercise 2.4. What values will the variables a, b, and ¢ have after executing the
following code:

int a = 4;
int b = 2;
int ¢ = 7;
b =a C;
c=b - 2;
a=a+ a;
b=0>bx 2;
c=c¢c-C;

Here, the operator - denotes subtraction and * represents multiplication. Once
you have arrived at an answer, type this code into the main function of a new
program and print the values of the variables. Did you get it right?

Exercise 2.5. What happens when an integer is divided by another integer? Try

printing the result of the following divisions: 2, 23, 2, 7, = and _12

Exercise 2.6. C++ allows declarations of immutable (constant) variables, using
the keyword const. For example

const int FIVE = 5;
What happens if you try to perform an assignment to such a variable?

There are many other types than int. We have seen one (although without
its correct name), the type for text. You can see some of the most common types
in Listing 2.3.

The text data type is called string. Values of this type must be enclosed
with double quotes. If we want to include an actual quote character in a string,
we type \".

There exists a data type containing one single letter, the char. Such a value
is surrounded by single quotes. The char value containing the single quote is
written ’\”, similarly to how we included double quotes in strings.

Then comes the int, which we discussed earlier. The long long type contains
integers just like the int type. They differ in how large integers they can contain.
An int can only contain integers between —23! and 23! — 1 while a long long
extends this range to —2%3 to 263 — 1.

22

2.3. VARIABLES AND TYPES

Listing 2.3 Types

string text = "Johan said: \"heya!\"™ ";
cout << text << endl;

char letter = '@';
cout << letter << endl;

int number = 7;
cout << number << endl;

long long largeNumber = 888888888888LL;
cout << largeNumber << endl;

double decimalNumber = 513.23;
cout << decimalNumber << endl;

bool thisisfalse = false;
bool thisistrue = true;
cout << thisistrue << " and " << thisisfalse << endl;

Exercise 2.7. Since \" is used to include a double quote in a string, we can not
include backslashes in a string like any other character. For example, how would
you output the verbatim string \"? Find out how to include a literal backslash in
a string (for example by searching the web or thinking about how we included
the different quote characters).

Exercise 2.8. Write a program that assigns the minimum and maximum values
of an int to a int variable x. What happens if you increment or decrement this
value using x = x + 1; or x = x - 1; respectively and print its new value?

Competitive Tip

One of the most common sources for errors in code is trying to store an integer value
outside the range of the type. Always make sure your values fit inside the range of an
int if you use it. Otherwise, use long longs!

One of the reasons for why we do not simply use long long all the time is that some
operations involving long longs can be slower using ints under certain conditions.

Next comes the double type. This type represents decimal numbers. Note
that the decimal sign in C++ is a dot, not a comma. There is also another similar
type called the float. The difference between these types are similar to that of

23

CHAPTER 2. PROGRAMMING IN C++

the int and long long. A double can represent “more” decimal numbers than
a float. This may sound weird considering that there is an infinite number of
decimal numbers even between 0 and 1. However, a computer can clearly not
represent every decimal number — not even those between 0 and 1. To do this,
it would need infinite memory to distinguish between these numbers. Instead,
they represent a limited set of numbers — with about 15 significant digits, and
about 308 zeroes to the left or right of those digits. Floats have fewer significant
digits, and can only represent smaller numbers.

The last of our common types is the bool (short for boolean). This type can
only contain one of two values — it is either true or false. While this may look
useless at a first glance, the importance of the boolean becomes apparent later.

Exercise 2.9. In the same way the integer types had a valid range of values, a
double cannot represent arbitrarily large values. Find out what the minimum and
maximum values a double can store is.

C++ has a construct called the typedef, or type definition. It allows us to
give certain types new names. Since typing long long for every large integer
variable is very annoying, we could use a type definition to alias it with the
much shorter 11 instead. Such a typedef statement looks like this:

typedef long long 11;
On every line after this statement, we can use 11 just as if it were a long long:

11 largeNumber = 888888888888LL;

Sometimes we use types with very long names but do not want to shorten
them using type definitions. This could be the case when we use many different
such types and typedefing them would take unnecessarily long time. We then
resort to using the auto “type” instead. If a variable is declared as auto and
assigned a value at the same time its type is inferred from that of the value. This
means we could write

auto str = 123;

instead of

int str = 123;

24

2.4. INPUT AND OUTPUT

2.4 Input and Output

In previous sections we occasionally printed things onto our screen. To spice
our code up a bit we are now going to learn how to do the reverse — reading
values which we type on our keyboards into a running program! When we run a
program we may type things in the window that appears. Pressing the Enter key
allows the program to read what we have written so far.

Reading input data is done just as you would expect, almost entirely sym-
metric to printing output. Instead of cout we use cin, and instead of << variable
we use >> variable, i.e.

cin >> variable;

Type in the program from Listing 2.4 to see how it works.

Listing 2.4 Input

#include <iostream>
using namespace std;

int main() {
string name;
cout << "What's your first name?" << endl;
cin >> name;
int age;
cout << "How old are you?" << endl;
cin >> age;
cout << "Hi, " << name << "!" << endl;
cout << "You are " << age << " years old." << endl;

Exercise 2.10. What happens if you type an invalid input, such as your first
name instead of your age?

When the program reads input into a string variable it only reads the text
until the first whitespace.

We revisit more advanced input and output concepts in Section 3.10 about
the standard library. For example, we learn how to read entire lines of text and
not only single words.

25

CHAPTER 2. PROGRAMMING IN C++

Problem 2.2
Echo — echo
Note: only solve part 1, reciving 1/2 points

2.5 Operators

Earlier we saw examples of what is called operators, such as the assignment
operator =, and the arithmetic operators + - * /, which stand for addition,
subtraction, multiplication and division. They work almost like they do in
mathematics, and allow us to write code such as the one in Listing 2.5.

Exercise 2.11. Type in Listing 2.5 and test it on a few different values. Most
importantly, test:

*b=0
» Negative values for a and/or b
» Values where the expected result is outside the valid range of an int

As you probably noticed, the division operator of C++ performs so-called
integer division. This means the answer is rounded to an integer (towards o).
Hence 7 / 3 = 2, with remainder 1, and -7 7 3 = -2.

Exercise 2.12. If division rounds down towards zero, how do you compute ?1/
rounded to an integer away from zero?

The snippet also introduces the modulo operator, %. It computes the
remainder of the first operand when divided by the second. As an example, 7 %
3 = 1. Different programming languages have different behaviours regarding
modulo operations on negative integers. In particular, the value of a modulo
operation can be negative when including negative operands.

In case we want the answer to be a decimal number instead of performing
integer division one of the operands must be a double (Listing 2.6).

We end this section with some shorthand operators. Check out Listing 2.7
for some examples. Each arithmetic operator has a corresponding combined
assignment operator. Such an operator, e.g. a += 5;, is equivalenttoa = a + 5;
They act as if the variable on the left hand side is also the left hand side of the
corresponding arithmetic operator and assign the result of this computation to
said variable. Hence, the above statement increases the variable a with 5.

26

https://kodsport.dev/problems/echo

R R T SR VR

2.5. OPERATORS

Listing 2.5 Operators

#include <iostream>
using namespace std;

int main() {

int a = 0;

int b = 0;

cin >> a >> b;

cout << "Sum: " << (a + b) << endl;

cout << "Difference: " << (a - b) << endl;
cout << "Product: " << (a * b) << endl;
cout << "Quotient: " << (a / b) << endl;
cout << "Remainder: " << (a % b) << endl;

Listing 2.6 Division Operators

int a = 6;

int b = 4;

cout << (a / b) << endl;
double aa = 6.0;
double bb = 4.0;

cout << (aa / bb) << endl;

It turns out that addition and subtraction with 1 is a fairly common operation.
So common, in fact, that additional operators were introduced into C++ for
this purpose of saving an entire character compared to the highly verbose +=1
operator. These operators consist of two plus signs or two minus signs. For
instance, a++ increments the variable by 1.

We sometimes use the fact that these expressions also evaluate to a value.
Which value this is depends on whether we put the operator before or after the
variable name. By putting ++ before the variable, the value of the expression
will be the incremented value. If we put it afterwards we get the original value.
To get a better understanding of how this works it is best if you type the code in
Listing 2.7 in yourself and analyze the results.

We end the discussion on operators by saying something about operator
precedence, i.e. the order in which operators are evaluted in expressions.
In mathematics, there is a well-defined precedence: brackets go first, then

27

CHAPTER 2. PROGRAMMING IN C++

Listing 2.7 Shorthand Operators

int num = 0;

num += 1;

cout << num << endl;
num x= 2;

cout << num << endl;
num -= 3;

cout << num << endl;
cout << num++ << endl;
cout << num << endl;
cout << ++num << endl;
cout << num << endl;
cout << num-- << endl;
cout << num << endl;

exponents, followed by division, multiplication, addition, and subtraction.
Furthermore, most operations (exponents being a notable exception) have left-
to-right associativity so that 5 — 3 — 1 equals ((5 — 3) — 1) = 1 rather than
(5= (3—=1)) = 3. In C++, there are a lot of operators, and knowing precedence
rules can easily save you from bugs in your future code.

Exercise 2.13. Research online C++ documentation on operator precedence to
determine what the expression
2% 4 -7 %2%4 /2

evalutes to in C++. Run it as a program to see if you got it correct.

Problem 2.3

Two-sum — twosum
Triangle Area — triarea
Bijele — bijele

Digit Swap — digitswap
Pizza Crust — pizzacrust
R2—r2

2.6 If Statements

In addition to assignment and arithmetic there are a large number of comparison
operators. These compare two values and evaluate to a bool value depending
on the result of the comparison (see Listing 2.8).

28

https://kodsport.dev/problems/twosum
https://kodsport.dev/problems/triarea
https://kodsport.dev/problems/bijele
https://kodsport.dev/problems/digitswap
https://kodsport.dev/problems/pizzacrust
https://kodsport.dev/problems/r2

L T

2.6. IF STATEMENTS

Listing 2.8 Comparison Operators

== b // check if a equals b

!=b // check if a and b are different

> b // check if a is greater than b

< b // check if a is less than b

<= b // check if a is less than or equal to b

>= b // check if a is greater than or equal to b

000 o R

A bool can also be negated using the ! operator. So the expression ! false
(which we read as “not false”) has the value true and vice versa !true evaluates
to false. The operator works on any boolean expressions, so that if b would be
a boolean variable with the value true, then the expression !b evaluates to false.

There are two more important boolean operators. The and operator && takes
two boolean values and evaluates to true if and only if both values were true.
Similarly, the or operator || evalutes to true if and only if at least one of its
operands were true.

Exercise 2.14. Write a program that reads two integers as input, and prints the
result of the different comparison operators from Listing 2.8, e.g

cout << (a == b) << endl;
Note the parenthesis used due to operator precedence!

A major use of boolean variables is in conjunction with if statements (also
called conditional statements). They come from the necessity of executing
certain lines of code if (and only if) some condition is true. Let us write a
program that takes an integer as input, and tells us whether it is odd or even.
We can do this by computing the remainder of the input when divided by 2
(using the modulo operator) and checking if it is o (even number), 1 (positive
odd number) or, -1 (negative odd number). An implementation of this can be
seen in Listing 2.9.

An if statement consists of two parts — a condition, given inside brackets
after the if keyword, followed by a body — some lines of code surrounded by
curly brackets. The code inside the body will be executed in case the condition
evaluates to true.

Our odd or even example contains a certain redundancy. If a number is
not even we already know it is odd. Checking this explicitly using the modulo

29

L T Y O

B % B ST R U

CHAPTER 2. PROGRAMMING IN C++

Listing 2.9 Odd or Even

int input;

cin >> input;

if (input % 2 == 0) {
cout << input <<

is even!" << endl;

}

if (input % 2 == 1 || input % 2 == -1) {
cout << input << " is odd!" << endl;

}

operator seems to be a bit unnecessary. Indeed, there is a construct that saves
us from this verbosity — the else statement. It is used after an if statement and
contains code that should be run if the condition given to the condition of an if
statement is false. We can adopt this to simplify our odd and even program to
the one in Listing 2.10.

Listing 2.10 Odd or Even 2

int input;
cin >> input;
if (input % 2 == 0) {
cout << input << " is even!" << endl;
} else {
cout << input << " is odd!" << endl;

}

There is one last if-related construct — the else if. Since code is worth a
thousand words, we demonstrate how it works in Listing 2.11 by implementing
a helper for the children’s game FizzBuzz. In FizzBuzz, one goes through the
natural numbers in increasing order and say them out loud. When the number is
divisible by 3 you instead say Fizz. If it is divisible by 5 you say Buzz, and if it
is divisible by both you say FizzBuzz.

Exercise 2.15. Run the program in Listing 2.11 with the values 30, 10, 6, 4.
Explain the output you get.

Problem 2.4
Expected Earnings — casino

30

https://kodsport.dev/problems/casino

2.7. FOR LOOPS

Grading — grading
Three-Sort — threesort
Spavanac — spavanac
Cetvrta — cetvrta

2.7 For Loops

Another rudimentary building block of programs is the for loop. A for loop is
used to execute a block of code multiple times. The most basic loop repeats
code a fixed number of times as in the example from Listing 2.12.

A for loop is built up from four parts. The first three parts are the semi-colon
separated statements immediately after the for keyword. In the first of these
parts you write some expression, such as a variable declaration. In the second
part you write an expression that evaluates to a bool, such as a comparison
between two values. In the third part you write another expression.

The first part will be executed only once — it is the first thing that happens in
a loop. In this case, we declare a new variable i and set it to 0. The loop will
then be repeated until the condition in the second part is false. Our example loop
will repeat until i is no longer less than repetitions. The third part executes
after each execution of the loop. Since we use the variable i to count how many
times the loop has executed, we want to increment this by 1 after each iteration.

Together, these three parts make sure our loop will run exactly repetitions
times. The final part of the loop is the statements within curly brackets. Just as
with the if statements, this is called the body of the loop and contains the code
that will be executed in each repetition of the loop. A repetition of a loop is in
algorithm language more commonly referred to as an iteration.

Exercise 2.16. What happens if you enter a negative value as the number of
loop repetitions?

Exercise 2.17. Design a loop that instead counts backwards, from repetitions — 1
to 0.

Problem 2.5

N-Sum — nsum

Building Pyramids — pyramids

Echo — echo

Note: solve both parts now, reciving 2/2 points

31

https://kodsport.dev/problems/grading
https://kodsport.dev/problems/threesort
https://kodsport.dev/problems/spavanac
https://kodsport.dev/problems/cetvrta
https://kodsport.dev/problems/nsum
https://kodsport.dev/problems/pyramids
https://kodsport.dev/problems/echo

CHAPTER 2. PROGRAMMING IN C++

Cinema Crowds — cinema
Refridgerator Transports — refridgerator

Within a loop, two useful keywords can be used to modify the loop — continue
and break. Using continue; inside a loop exits the current iteration and starts the
next one. break; on the other hand, exits the loop altogether. For an example,
consider Listing 2.13.

Exercise 2.18. What will the following code snippet output?

for (int i = 0; false; i++) {
cout << i << endl;

}

for (int i = 0; i >= -10; --i) {
cout << i << endl;

}

for (int i = 0; i <= 10; ++i) {
if (i % == 0) continue;
if (i == 8) break;
cout << i << endl;

}

Problem 2.6
Cinema Crowds 2 — cinema2
Lamps — lamps

2.8 While Loops

There is a second kind of loop, which is simpler than the for loop. It is called a
while loop, and works like a for loop where the initial statement and the update
statement are removed, leaving only the condition and the body. It can be
used when you want to loop over something until a certain condition is false
(Listing 2.14).

The break; and continue; statements work the same way as the do in a for
loop.

Problem 2.7
3n+1 — 3nplusl
Soda Sluper — sodaslurper

32

https://kodsport.dev/problems/cinema
https://kodsport.dev/problems/refridgerator
https://kodsport.dev/problems/cinema2
https://kodsport.dev/problems/lamps
https://kodsport.dev/problems/3nplus1
https://kodsport.dev/problems/sodaslurper

[N T

2.9. FUNCTIONS

Listing 2.11 Else If

int input;

cin >> input;

if (input % 15 == 0) {
cout << "FizzBuzz" << endl;

} else if (input % 5 == 0) {
cout << "Buzz" << endl;

} else if (input % 3 == 0) {
cout << "Fizz" << endl;

} else {
cout << input << endl;

}

Listing 2.12 For Loops

int repetitions = 0;
cin >> repetitions;
for (int i = 0; i < repetitions; i++) {
cout << "This is repetition " << i << endl;

}

2.9 Functions

In mathematics a function is something that takes one or more arguments and
computes some value based on them. Common functions include the squaring
function square(x) = x, the addition function add(x, y) = x+y or, the minimum
function min(a, b) which evalutes to the smallest of its arguments.

Functions exists in programming as well but work a bit differently. Indeed,
we have already seen a function — the main() function. We have implemented
the example functions in Listing 2.15.

In the same way that a variable declaration starts by proclaiming what
data type the variable contains a function declaration states what data type the
function evaluates to. Afterwards, we write the name of the function followed
by its arguments (which is a comma-separated list of variable declarations).
Finally, we give it a body of code wrapped in curly brackets.

All of these functions contain a statement with the return keyword, unlike our
main function. A return statement says “stop executing this function, and return
the following value!”. Thus, when we call the squaring function by square(x),

33

™

o w s oW

CHAPTER 2. PROGRAMMING IN C++

Listing 2.13 Break and Continue

int check = 36;

for (int divisor = 2; divisor * divisor <= check; ++divisor) {
if (check % divisor == 0) {
cout << check << " is not prime!" << endl;
cout << "It equals " << divisor << " x " << (check / divisor) << endl;

break;
}
}
for (int divisor = 1; divisor <= check; ++divisor) {
if (check % divisor == 0) {
continue;
}

cout << divisor << " does not divide " << check << endl;

}

Listing 2.14 While

int num = 9;
while (num != 1) {
if (num % 2 == 0) {
num /= 2;
} else {
num = 3 * num + 1;
}

cout << num << endl;

the function will compute the value x = x and make sure that square(x) evaluates
to just that.

Why have we left a return statement out of the main function? In main(), the
compiler inserts an implicit return 0; statement at the end of the function.

Exercise 2.19. What will the following function calls evaluate to?

min(square(10), add(square(9), 23));

Exercise 2.20. . We declared all of the new arithmetic functions above our main
function in the example. Why did we do this? What happens if you move one
below the main function instead? (Hint: what happens if you try to use a variable
before declaring it?)

34

2.9. FUNCTIONS

Listing 2.15 Functions

#include <iostream>
using namespace std;

int square(int x) {
return x x X;

}

int min(int x, int y) {
if (x <y) {
return x;
} else {
return y;
}
}

int add(int x, int y) {
return x + y;

}
int main() {
int x, y;
cin >> x >> vy;
cout << x << "72 = " << square(x) << endl;
cout << x << " + " <<y << " =" << add(x, y) << endl;

cout << "min(" << x << ", " <<y << ") =" << min(x, y) << endl;

Exercise 2.21. . Research online what a forward declaration of a function is,
and how it resolves the problem from Exercise 2.20.

Problem 2.8
Arithmetic Functions — arithmeticfunctions

An important caveat to note when calling functions is that the arguments
we send along are copied. If we try to change them by assigning values to our
arguments, we will not change the original variables in the calling function (see
Listing 2.16 for an example).

We can also choose to not return anything by using the void return type. This
may seem useless since nothing ought to happen if we call a function but does
not get anything in return. However, there are ways we can affect the program

35

https://kodsport.dev/problems/arithmeticfunctions

[

o v e oW

CHAPTER 2. PROGRAMMING IN C++

Listing 2.16 Argument Copying

void change(int val) {
val = 0;
}

int main() {
int variable = 100;
change(variable);
cout << "Variable is

}

" << variable << endl;

without returning.

The first one is by using global variables. It turns out that variables may
be declared outside of a function. It is then available to every function in your
program. Changes to a global variable by one function are also be seen by other
functions (try out Listing 2.17 to see them in action).

Listing 2.17 Global Variables

int currentMoney = 0;

void deposit(int newMoney) {
currentMoney += newMoney;

}

void withdraw(int withdrawal) {
currentMoney -= withdrawal;

}

int main() {
cout << "Currently, you have " << currentMoney << " money" << endl;
deposit(1000);
withdraw(2000);
cout << "Oh-oh! Your balance is " << currentMoney << " :(" << endl;

}

Problem 2.9
Counting Days — countingdays

Secondly, we may actually change the variables given to us as arguments by
declaring them as references. Such an argument is written by adding a & before

36

https://kodsport.dev/problems/countingdays

2.10. STRUCTURES

the variable name, for example int &x. If we perform assignments to the variable
x within the function we change the variable used for this argument in the calling
function instead. Listing 2.18 contains an example of using references.

Listing 2.18 References

// Note &val instead of val
void change(int &val) {

val = 0;
}

int main() {
int variable = 100;
cout << "Variable is " << variable << endl;
change(variable);
cout << "Variable is " << variable << endl;

Problem 2.10
Logic Functions — logicfunctions

Exercise 2.22. Why is the function call change(4) not valid C++? (Hint: what
exactly are we changing when we assign to the reference in func?)

2.10 Structures

Algorithms operate on data, usually lots of it. Programming language designers
therefore came up with many ways of organizing the data our programs use.
One of these constructs is the structure (also called a record, and in C++ almost
equivalent to something called a class). Structures are a special kind of data
type that can contain member variables — variables inside them — and member
functions — functions which can operate on member variables.

The basic syntax used to define a structure looks like this:
struct Point {

double x;

double y;
}

This particular structure contains two member variables, x and y, representing
the coordinates of a point in 2D Euclidean space.

Once we have defined a structure we can create instances of it. Every

instance has its own copy of the member variables of the structure. Structs

37

https://kodsport.dev/problems/logicfunctions

CHAPTER 2. PROGRAMMING IN C++

essentially encapsulate concepts — like books — while instances of the struct
represent individal, particular books (like this one!).

To create an instance of a struct, use the same syntax as with other variables;
We can get the value of a member variable of a structure using the syntax
instance.variable:

Point origin; // create an instance of the Point structure

// set the coordinates to (0, 0)
origin.x = 0;
origin.y = 0;
cout << "The origin is (" << origin.x << ", "

<< origin.y << ")." << endl;
As you can see structures allow us to group certain kinds of data together in a
logical fashion. Later on, this will simplify the coding of certain algorithms and
data structures immensely.

There is an alternate way of constructing instances called constructors. A
constructor looks like a function inside our structure and allows us to pass
arguments when we create a new instance of a struct. The constructor receives
these arguments to help set up the instance.

Let us add a constructor to our point structure, to more easily create instances:

struct Point {
double x;
double y;

Point(double theX, double theY) {
x = theX;
y = they;
+i
The newly added constructor lets us pass two arguments when constructing
the instance to set the coordinates correctly. With it, we avoid the two extra
statements to set the member variables.

Point p(4, 2.1);
cout << "The point is (" << p.x << ",

<< p.y << ")." << endl;

Structure values can also be constructed outside of a variable declaration using
the syntax
Point (1, 2);

so that we can reassign a previously declared variable with

38

2.10. STRUCTURES

p = Point(1, 2);

We can also define functions inside the structure. These functions work
just like any other functions except they can also access the member variables
of the instance that the member function is called on. For example, we might
want a convenient way to mirror a certain point in the x-axis. This could be
accomplished by adding a member function:

struct Point {
double Xx;
double y;

Point(double theX, double theY) {
X = theX;
y = theY;

}

Point mirror() {
return Point(x, -y);

}
b

To call the member function mirror() on the point p, we write p.mirror(),
for example:
Point p(1, 2);
Point mirrored = p.mirror();
cout << "(" << mirrored.x << ", " << mirrored.y << ")" << endl;

In this example we see yet another use of a void function. Such member
functions can still modify the member variables of the struct the belong to.

Exercise 2.23. Add a translate member function to the point structure. It should
take two double values x and y as arguments, returning a new point which is the
instance point translated by (x, y).

Similarly to the const modifier that could be added to a variable declaration,
one can also declare a member function to be const:

Point mirror() const {

return Point(x, -y);
}
The keyword must be added right before the last brace. Such a function is unable
to modify any of the member variables. It can not call other member functions
that are not declared as const either. Generally, you will never have to worry
about declaring functions to be const.

39

CHAPTER 2. PROGRAMMING IN C++

Exercise 2.24. What happens if we try to change a member variable in a const
member function?

Finally, C++ has a powerful mechanism called operator overloading. It
allows us to define how various operators such as + should behave if we apply
them to instances of a struct. For example, we could define what happens
when we write

a+b

where a and b are Points. The syntax for the binary operators looks like this:

Point operator+(Point other) {
double newX = x + other.x;
double newY = y + other.y;
return Point(newX, newY);

}

Try this function out by defining two points and computing their sum.

Exercise 2.25. One can use operator overloading for binary operators where the
types are different as well. For example,

Point operatorx(double m) { ... }

would define what happens if you multiply a point by a double. Add such a
function to your point, that returns a point with its coordinates scaled by the
given double.

Exercise 2.26. Fill in the remaining code to implement this structure:

struct Quotient {
// .. member variables?
// Construct a new Quotient with the given numerator and denominator
Quotient(int n, int d) { }
// Return a new Quotient, this instance plus the "other" instance
Quotient add(const Quotient &other) const { }
// Return a new Quotient, this instance times the "other" instance
Quotient multiply(const Quotient &other) const { }
// Output the value on the screen in the format n/d
void print() const { }

+

2.11 Arrays

In the Sorting Problem from Chapter 1 we often spoke of the data type “sequence
of integers”. Until now, none of the data types we have seen in C++ represents
this kind of data. We present the array. It is a special type of variable, which

40

2.11. ARRAYS

can contain a large number of variables of the same type. For example, it could
be used to represent the recurring data type “sequence of integers” from the
Sorting Problem in Chapter 1. When declaring an array, we specify the type of
variable it should contain, its name, and its size using the syntax:

type name[size];

For example, an integer array of size 10 named seq would be declared with

int seq[10];

This creates 10 integer “variables” which we can refer to using the syntax
seq[index], starting from zero (they are zero-indexed). Thus we can use seq[0],
seq[1], etc., all the way up to seq[9]. The values are called the elements of the
array.

size =10

seq[0] | seq[1] | seq[2] | seq[3] | seq[4] | seq[5] | seq[6] | seq[7] | seq[8] | seq[9]

Figure 2.1: A 10-element array called seq.

Be aware that using an index outside the valid range for a particular array
(i.e. below o or above the size — 1) can cause erratic behavior in the program
without crashing it.

If you declare a global array all elements get a default value. For numeric
types this is o, for booleans this is false, for strings this is the empty string and
so on. If, on the other hand, the array is declared in the body of a function that
guarantee does not apply. Instead of being zero-initialized, the elements can
have random values. For this reason, arrays are mostly declared globally in
competitive programming.

You can see an example of arrays in action in Listing 2.19, which computes
a few of the the possible scores of a roll in the dice game Yatzee.

Later on (Section 3.1) we transition from using arrays to a much more
powerful structure from the standard library which serves the same purpose —
the vector.

Problem 2.11
Reversal — reverse
N-Back — nback

41

https://kodsport.dev/problems/reverse
https://kodsport.dev/problems/nback

CHAPTER 2. PROGRAMMING IN C++

Modulo — modulo
I've Been Everywhere, Man — everywhere

2.12 Lambdas

We will now briefly discuss a somewhat complex language constract — lambdas.
It is very seldom necessary to solve problems, but we occasionally use it in code
throughout the book.

A lambda expression is essentially an unnamed function that can be defined
within another function and assigned to a variable of the function type:
function<int,int(int)> op = [](int a, int b) -> int {

return a * b + a + b;
zc’Jut << op(5, op(1l, 2)) << endl;

Here, we have defined a function that takes two values a and b, and returns
the value a * b + a + b. We have assigned the function to the variable op, and
can invoke it as if it was a regular function with that name.

Generally, definitions look simpler than this — if the function is “simple
enough”, we can ignore the -> int part, which we use to specify the return value
of the lambda. We also tend to use the auto type instead of the more convoulted
function<...>type, as long as the lambda does not call itself through the name
of the variable to which it is assigned.

Thus, the declaration may also look like this:

auto op = [](int a, int b) {

return a *x b + a + b;
}i

What is the point of doing this rather than simply using regular functions?
Lambdas can also be given access to variables of the enclosing function:

int x = 5;
auto addToX = [&](int y) {
X +=y;
}
Here, note the added ampersand in [&]. This means that all variables defined
before the lambda in the function should be accessible within the lambda as

references.
Exercise 2.27. Use the internet to figure out:

* how to only make a single variable from the enclosing function available
in a lambda.

42

https://kodsport.dev/problems/modulo
https://kodsport.dev/problems/everywhere

2.13. THE PREPROCESSOR

Listing 2.19 Arrays

#include <iostream>
using namespace std;
int rolls[7];

int main() {

cout << "Enter 5 dice rolls between 1 and 6: " << endl;
for (int i = 0; i < 5; i++) {
int roll;

cin >> roll;
rolls[roll]++;
}
cout << "Yatzee scores: " << endl;
for (int i = 1; i <= 6; i++) {
cout << 1 << "'s: " << (1 * rolls[i]) << endl;

}

* how to make variables within the enclosing function avalable as copies
rather than as references.

* how lambdas can be passed as arguments to other functions.

2.13 The Preprocessor

C++ has a powerful tool called the preprocessor. This utility is able to read and
modify your code using certain rules during compilation. The commonly used
#include is a preprocessor directive that includes a certain file in your code.

Besides file inclusion, we mostly use the #define directive. It allows us to
replace certain tokens in our code with other ones. The most basic usage is
#define TOREPLACE REPLACEWITH

which replaces the token TOREPLACE in our program with REPLACEWITH. The true
power of the define comes when using define directives with parameters. These
look similar to functions and allows us to replace certain expressions with
another one, additionally inserting certain values into it. We call these macros.
For example the macro

#define rep(i,a,b) for (int i = a; 1 < b; i++)

means that the expression

43

CHAPTER 2. PROGRAMMING IN C++

rep(i,0,5) {
cout << 1 << endl;

}
is expanded to
for (int i = 0; 1 < 5; ++i) {
cout << i << endl;
}
You can probably get by without ever using macros in your code. The reason

we discuss them is because we are going to use them in code in the book so it
is a good idea to at least be familiar with their meaning. They are also used in
competitive programming in general,

2.14 Template

In competitive programming, one often uses a template, with some shorthand
typedef’s and preprocessor directives. In Listing 2.20, we give an example of
the template used in some of the C++ code in this book.

Listing 2.20 Coding Template

#include <bits/stdc++.h>
using namespace std;

#define rep(i, a, b) for(int i = a; 1 < (b); ++1i)
#define trav(a, x) for(auto& a : x)

#define all(x) x.begin(), x.end()

#define sz(x) (int)(x).size()

typedef long long 11;

typedef pair<int, int> pii;

typedef vector<int> vi;

int main() {

}

The rep(i,a,b) macro is the one we saw in the previous section — it can be
used to write a simple counting loop in a compact way.

The trav(a, x) macroisused to iterate through all members of a data structure
from the standard library such as the vector — the first topic of Chapter 3.

The all(x) macro is used together with certain operations from the standard
library — we’ll see concrete examples in the next chapter.

The sz(x) macro is used get the size of a data structure from the standard
library.

44

2.14.

TEMPLATE

Chapter Exercises

Problem 2.12

Cubes — kuber

Islands — oar

Grading — betygsattning

Faroffistanian Personal Numbers — checksum
Mini Golf — minigolf

Booking — booking

Tomatoes — tomater

Will Roger’s Phenomena — willrogers

Yatzee — yatzee

Memory — memory

Chapter Notes

C++ was invented by Danish computer scientist Bjarne Stroustrup. Bjarne has
also published a book on the language, The C++ Programming Language[27],
that contains a more in-depth treatment of the language. It is rather accessible to
C++ beginners but is better read by someone who have some prior programming

experience (in any programming language).

C++ is standardized by the International Organization for Standardization
(ISO). These standards are the authoritative source on what C++ is. The final
drafts of the standards can be downloaded at the homepage of the Standard C++

Foundation?!.

There are many online references of the language and its standard library.

The two we use most are:
® http://en.cppreference.com/w/

® http://www.cplusplus.com/reference/

Thttps://isocpp.org/

45

https://kodsport.dev/problems/kuber
https://kodsport.dev/problems/oar
https://kodsport.dev/problems/betygsattning
https://kodsport.dev/problems/checksum
https://kodsport.dev/problems/minigolf
https://kodsport.dev/problems/booking
https://kodsport.dev/problems/tomater
https://kodsport.dev/problems/willrogers
https://kodsport.dev/problems/yatzee
https://kodsport.dev/problems/memory
http://en.cppreference.com/w/
http://www.cplusplus.com/reference/
https://isocpp.org/

CHAPTER 2. PROGRAMMING IN C++

46

3 The C++ Standard Library

In this chapter we study parts of the C++ standard library — that is, data structures,
algorithms and utilities that are already provided for us without having to code
them ourselves.

We start by examining a number of basic data structures. Data structures
help us organize the data we work with in the hope of making processing
both easier and more efficient. Different data structures serve widely different
purposes and solve different problems. Whether a data structure fits our needs
depends on what operations we wish to perform on the data. We consider
neither the efficiency of the various operations in this chapter nor how they are
implemented. These concerns are postponed until Chapter 6, when we have the
tools to analyze the efficiency of data structures.

The standard library also contains many useful algorithms such as sorting and
various mathematical functions. These are discussed after the data structures.

In the end, we take a deeper look at string handling in C++ and some more
input/output routines.

3.1 vector

One of the latter things discussed in the C++ chapter was the fixed-size array.
As you might remember the array is a special kind of data type that allows us to
store multiple values of the same data type inside what appeared to us as a single
variable. Arrays are a bit awkward to work with in practice. When passing them
as parameters we must also pass along the size of the array. We are also unable
to change the size of arrays once declared nor can we easily remove or insert
elements, or copy arrays.

The dynamic array is a special type of array that can change size (hence
the name dynamic). It also supports operations such as removing and inserting
elements at any position in the list.

The C++ standard library includes a dynamic array called a vector, which is
an alternative name for dynamic arrays in some languages. To use it you must
include the vector file by adding the line

47

CHAPTER 3. THE C++ STANDARD LIBRARY

#include <vector>

among your other includes at the top of your program.

When declaring vectors, they need to know what type of data they should
store, just like ordinary arrays. This is done using a somewhat peculiar syntax.
To create a vector containing strings named words we write

vector<string> words;

This angled bracket syntax appears again later when using other C++
structures from the standard library.

Once a vector is created elements can be appended to it using the push_back
member function. The following four statements would add the words Simon is
a fish as separate elements to the vector:

words.push_back("Simon");
words.push_back("is");
words.push_back("a");
words.push_back("fish");
To refer to a specific element in a vector you can use the same operator [1 as
for arrays. Thus, words[i] refers to the i’th value in the vector (starting at 0).

cout << words[0] << " " << words[1l] << " "; // Prints Simon 1is
cout << words[2] << " " << words[3] << " "; // Prints a fish

Like arrays, accessing indices outside the valid range of the vector can cause
weird behaviour in your program.
We can get the current size of an array using the size() member function:

cout << "The vector contains " << words.size() << " words" << endl;
There is also an empty () function that can be used to check if the vector contains

no elements. These two functions are part of basically every standard library
data structure.

Problem 3.1

Vector Functions — vectorfunctions

You can also create dynamic arrays that already contain a number of elements.
This is done by passing an integer argument when first declaring the vector.
They are filled with the same default value as (global) arrays are when created:

vector<int> vec(5); // creates a vector containing 5 zeroes

48

https://kodsport.dev/problems/vectorfunctions

3.1. vector

The value that such an array is filled with can also be set explicitly by using
a two-argument constructor; the second argument is the value to fill the array
with:

vector<int> vec(5, -1); // creates a vector containing 5 -1's

Exercise 3.1. What happens when you create vectors of a struct?
Try using structures:

¢ without a constructor,

» with a zero argument constructor,

* with only non-zero argument constructors and

 with both zero argument and non-zero argument constructors.

We can create vectors that also contain other vectors, to make multidimen-
sional vectors. For example, we could make a 2-dimensional vector (i.e. a grid
of values) in the following way:

vector<vector<int>> grid(7, vector<int>(5));

Since we filled the vector with 7 vectors of length 5, we get 7 x 5 grid of integers.
The values in the grid are then referred to using grid[a][b] where 0 < a < 5
and0 <b <7

Similarly, one can create N-dimensional vectors by creating vectors of
vectors of ... and so on.

Problem 3.2
Cinema Seating — cinemaseating

Other occasionally useful functions that a vector support are:
* pop_back(): remove the last element of a vector

e clear(): remove all elements of a vector

e front(): get the first element of a vector

* back(): get the first element of a vector

* assign(n, val): replace the contents of the vector with n copies of val.

49

https://kodsport.dev/problems/cinemaseating

CHAPTER 3. THE C++ STANDARD LIBRARY

3.2 Iterators

A concept central to the standard library is the iterator. An iterator is an object
which “points to” an element in some kind of data structure (such as a vector).
Essentially, they are a generalization of the role played by an integer representing
an index of a vector. The reason we could not simply eliminate their use and use
integer indexes directly wherever iterators appear is that some data structures
do not support accessing values directly by their index. Not all data structures
support iterators either.

The type of an iterator for a data structure of type t is t::iterator. An
iterator of a vector<string> thus has the type vector<string>::iterator. Most
of the time we instead use the auto type since this is very long to type.

To get an iterator to the first element of a vector, we use begin():

auto first = words.begin();

We can get the value that an iterator points at using the = operator:

cout << "The first word is " << xfirst << endl;

If we have an iterator it pointing at the i’th element of a vector we can get
a new iterator pointing to another value in one of two ways. For iterators of a
vector, we add or subtract an integer value to the iterator. For example, it + 4
points to the (i + 4)’th element of the vector, and it - 1 is the iterator pointing
to the (i — 1)’st element.

For those structures that do not support access by indexes, the iterators can
instead by moved forwards and backwards using the ++ and - - operators, i.e. by
writing it++ and it--.

There is a special kind of iterator which points to the first position after the
last element. We get this iterator by using the function end(). It allows us to
iterate through a vector in the following way:

for (auto it = words.begin(); it != words.end(); it++) {
string value = xit;
cout << value << endl;

}
In this loop we start by creating an iterator which points to the first element of
the vector. Our update condition will repeatedly move the iterator to the next
element in the vector. The loop condition ensures that the loop breaks when the
iterator first points to the element past the end of the vector.

In modern C++ language versions, there is a shorter construct that is
equivalent to this loop:

50

3.3. queue

for (auto : words) {
cout << value << endl;

}

In addition to the begin() and end() pair of iterators, there is also rbegin()
and rend(). They work similarly, except that they are reverse iterators - they
iterate in the other direction. Thus, rbegin() actually points to the last element
of the vector, and rend() to an imaginary element before the first element of the
vector. If we move a reverse iterator in a positive direction, we will actually
move it in the opposite direction (i.e. adding 1 to a reverse iterator makes it
point to the element before it in the vector).

Exercise 3.2. Use the rbegin()/rend() iterators to code a loop that iterates
through a vector in the reverse order.

Certain operators on a vector require the use of vector iterators. For example,
the insert and erase member functions, used to insert and erase elements at
arbitrary positions, take iterators to describe positions. When removing the
second element, we write

words.erase(words.begin() + 1);
The insert() function uses an iterator to know at what position an element
should be inserted. If it is passed the begin() iterator the new element will be

inserted at the start of the array. Similarly, as an alternative to push_back() we
could have written

words.insert(words.end(), "food");
to insert an element at the end of the vector.
Exercise 3.3. After adding these two lines, what would the loop printing every

element of the vector words output?

Problem 3.3

Cut in Line — cutinline

3.3 queue

The queue structure corresponds to a plain, real-life queue. It supports mainly
two operations: appending an element to the back of the queue, and extracting
the first element of the queue. The structure is in the queue file so it must be
included using

51

https://kodsport.dev/problems/cutinline

CHAPTER 3. THE C++ STANDARD LIBRARY

#include<queue>

As with all standard library data structures declaring a queue requires us to
provide the data type which we wish to store in it. To create a queue storing
ints we would use the statement

queue<int> q;
We use mainly five functions when dealing with queues:
¢ push(x): add the element x to the back of the queue
* pop(): remove the element from the front of the queue
e front(): return the element from the front of the queue
e empty(): return true if and only if the queue is empty
* size(): return the number of elements in the queue

Exercise 3.4. There is a similar data structured called a dequeue. The standard
library version is named after the abbreviation deque instead. Use one of the
C++ references from the C++ chapter notes (Section 2.14) to find out what this
structure does and what its member functions are called.

3.4 stack

A stack is a structure very similar to a queue. The difference is that when
push()ing something to a stack, it is added first to the stack instead of last. To
use it you need to include

#include<stack>

Creating a stack containing e.g. ints is as easy as creating a queue:

stack<int> q;
We use mainly five functions when dealing with queues:
* push(x): add the element x to the top of the stack
¢ pop(): remove the element from the top of the stack

* top(): return the element from the top of the stack

52

3.5. priority_queue

* empty(): return true if and only if the stack is empty
e size(): return the number of elements in the stack

Note the change in terminology. Instead of the first and last elements being
called front and back as for the queue they are instead called top and bottom in a
stack.

3.5 priority_queue

The queue and stack structures are arguably unnecessary, since they can be
emulated using a vector (see Sections 6.2, 6.3). This is not the case for the next
structure, the priority_queue.

The structure is similar to a queue or a stack, but instead of insertions and
extractions happening at one of the endpoints of the structure, the greatest
element is always returned during the extraction.

The structure is located in the same file as the queue structure, so add

#include<queue>

to use it.
To initialize a priority queue, use the same syntax as for the other structures:

priority_queue<int> pq;

This time there is one more way to create the structure that is important to
remember. It is not uncommon to prefer the sorting to be done according to
some other order than descending. For this reason there is another way of
creating a priority queue. One can specify a comparison function that takes
two arguments of the type stored in the queue and returns true if the first one
should be considered less than the second. This function can be given as an
argument to the type in the following way:

bool cmp(int a, int b) {
return a > b;

}
priority_queue<int, vector<int>, cmp> pq;

// or equivalently
priority_queue<int, vector<int>, greater<int>> pq;

Note that a priority queue by default returns the greatest element. If we want to
make it return the smallest element, the comparison function needs to instead

53

CHAPTER 3. THE C++ STANDARD LIBRARY

say that the smallest of the two elements actually is the greatest, somewhat
counter-intuitively.
Interactions with the queue is similar to that of the other structures:

* push(x): add the element x to the priority queue

* pop(): remove the greatest element from the priority queue

* top(): return the greatest element from the priority queue

* empty(): return true if and only if the priority queue is empty

* size(): return the number of elements in the priority queue

Problem 3.4

I Can Guess the Data Structure! — guessthedatastructure
Akcija — akcija

Cookie Selection — cookieselection

Pivot — pivot

3.6 set and map

The final data structures to be studied in this chapter are also the most powerful:
the set and the map.

The set structure is similar to a mathematical set (Section A.2), in that it
contains a collection of unique elements. Unlike the vector, particular positions
in the structure can not be accessed using the [] operator. This may make
sets seem worse than vectors. The advantage of sets is twofold. First, we can
determine membership of elements in a set much more efficently compared to
when using vectors (in Chapters 5 and 6, what this means will become clear).
Secondly, sets are also sorted. This means we can quickly find the smallest and
greatest values of the set.

Elements are instead accessed only through iterators, obtained using the
begin(), end() and find() member functions. These iterators can be moved
using the ++ and - - iterators, allowing us to navigate through the set in sorted
(ascending) order (with begin() referring to the smallest element).

Elements are inserted using the insert function and removed using the erase
function. A concrete example usage is found in Listing 3.1

A structure similar to the set is the map. It is essentially the same as a set,
except the elements are called keys and have associated values. When declaring

54

https://kodsport.dev/problems/guessthedatastructure
https://kodsport.dev/problems/akcija
https://kodsport.dev/problems/cookieselection
https://kodsport.dev/problems/pivot

™

o w s oW

3.7. MATH

Listing 3.1 Sets

set<int> s;
s.insert(4);
s.insert(7);
s.insert(1);

// find returns an iterator to the element if it exists
auto it = s.find(4);

// ++ moves the iterator to the next element in order
++it;

cout << xit << endl;

// 1f nonexistant, find returns end()
if (s.find(7) == s.end()) {
cout << "7 is not in the set" << endl;

}

// erase removes the specific element
s.erase(7);

if (s.find(7) == s.end()) {
cout << "7 is not in the set" << endl;

}

cout << "The smallest element of s is " << *s.begin() << endl;

a map two types need to be provided — that of the key and that of the value. To
declare a map with string keys and int values you write

map<string, int> m;

Accessing the value associated with a key x is done using the [] operator, for
example, m["Johan"]; would access the value associated with the "Johan" key.

Problem 3.5
Secure Doors — securedoors
Babelfish — babelfish

3.7 Math

Many algorithmic problems require mathematical functions. In particular you
there is a heavy use of square roots and trigonometric functions in geometry
problems. These of these functions are be found in the

55

https://kodsport.dev/problems/securedoors
https://kodsport.dev/problems/babelfish

™

o w s oW

CHAPTER 3

. THE C++ STANDARD LIBRARY

Listing 3.2 Maps

map<string, int> age;

age["Johan"]
age["Simon"]

if (age.find
cout <<

}

= 22;
= 23;

("Aron") == age.end()) {
"No record of Aron's age" << endl;

cout << "Johan is " << age["Johan"] << " years old" << endl;
cout << "Anton is " << age["Anton"] << " years old" << endl;

age.erase("Johan");
cout << "Johan is " << age["Johan"] << " years old" << endl;

auto last =
cout << (xla

--age.end();

st).first << " is " << (xlast).second << " years old" << endl;

#include <cmath>

library.

We list some of the most common such functions here:

® abs(x)
® sqrt(x
® pow(Xx,
® exp(x)
¢ log(x)
® cos(x)
® sin(x)

®* tan(x)

: computes |x| (x if x > 0, otherwise —x)

): computes /x
y): computes x¥

: computes e*

: computes In(x)
/ acos(x): computes cos(x) and arccos(x) respectively
/ asin(x): computes sin(x) and arcsin(x) respectively

/ atan(x): computes tan(x) and arctan(x) respectively

® ceil(x) / floor(x): computes [x] and | x| respectively

There are also min(x, y) and max(x, y) functions which compute the min-
imum and maximum of the values x and y respectively. These are not in the
cmath library however. Instead, they are in algorithm.

56

3.8. ALGORITHMS

Problem 3.6

Vacuumba — vacuumba
Half a Cookie — halfacookie
Ladder — ladder

A1 Paper — alpaper

3.8 Algorithms

A majority of the algorithms we regularly use from the standard library operate
on sequences. To use algorithms, you need to include

#include <algorithm>

Sorting

Sorting a sequences is very easy in C++. The function for doing so is named
sort. It takes two iterators marking the beginning and end of the interval to be
sorted and sorts it in-place in ascending order. For example, to sort the first 10
elements of a vector named v you would use

sort(v.begin(), v.begin() + 10);

Note that the right endpoint of the interval is exclusive — it is not included in
the interval itself. This means that you can provide v.end() as the end of the
interval if you want to sort the vector until the end.

As with priority_queues or sets, the sorting algorithm can take a custom
comparator if you want to sort according to some other order than that defined
by the < operator. For example,

sort(v.begin(), v.end(), greater<int>());

would sort the vector v in descending order. You can provide other sorting
functions as well. For example, you can sort numbers by their absolute value by
passing in the following comparator:

bool cmp(int a, int b) {
return abs(a) < abs(b);

}

sort(v.begin(), v.end(), cmp);

What happens if two values have the same absolute value when sorted with
the above comparator? With sort, this behaviour is not specified: they can
be ordered in any way. Occasionally you want that values compared by your
comparison function as equal are sorted in the same order as they were given

57

https://kodsport.dev/problems/vacuumba
https://kodsport.dev/problems/halfacookie
https://kodsport.dev/problems/ladder
https://kodsport.dev/problems/a1paper

CHAPTER 3. THE C++ STANDARD LIBRARY

in the input. This is called a stable sort, and is implemented in C++ with the
function stable_sort.

To check if a vector is sorted, the is_sorted function can be used. It takes
the same arguments as the sort function.

Problem 3.7

Shopaholic — shopaholic

Busy Schedule — busyschedule
Sort of Sorting — sortofsorting

Searching

The most basic search operation is the find function. It takes two iterators
representing an interval and a value. If one of the elements in the interval equals
the value, an iterator to the element is returned. In case of multiple matches the
first one is returned. Otherwise, the iterator provided as the end of the interval
is returned. The common usage is

find(v.begin(), v.end(), 5);

which would return an iterator to the first instance of 5 in the vector.

To find out how many times an element appears in a vector, the count function
takes the same arguments as the find function and returns the total number of
matches.

If the array is sorted, you can use the much faster binary search opera-
tions instead. The binary_search function takes as argument a sorted interval
given by two iterators and a value. It returns true if the interval contains the
value. The lower_bound and upper_bound functions takes the same arguments as
binary_search, but instead returns an iterator to the first element not less and
greater than the specified value, respectively. For more details on how these
are implemented, read Section 12.3.

Permutations

In some problems, the solution involves iterating through all permutations
(Section ??) of a vector. As one of few languages, C++ has a built-in func-
tions for this purpose: next_permutation. The function takes two iterators as
arguments and rearranges the interval they specify to be the next permutation
in lexicographical order. If there is no such permutation, the interval instead
becomes sorted and the function returns false. This suggests the following

58

https://kodsport.dev/problems/shopaholic
https://kodsport.dev/problems/busyschedule
https://kodsport.dev/problems/sortofsorting

3.9. STRINGS

common pattern to iterate through all permutations of a vector v:

sort(v.begin(), v.end());
do {
// do something with v
} while (next_permutation(v.begin(), v.end()));
This do-while-syntax is similar to the while loop, except the condition is checked

after each iteration instead of before. It is equivalent to

sort(v.begin(), v.end());
while (true) {
// do something with v
if (!next_permutation(v.begin(), v.end())) {
break;

}

Problem 3.8

Veci — veci

3.9 Strings

We have already used the string type many times before. Until now one of the
essential features of a string has been omitted — a string is to a large extent like
a vector of chars. This is especially true in that you can access the individual
characters of a string using the [] operator. For a string

string thecowsays = "boo";

the expression thecowsays[0] is the character 'b’. Furthermore, you can push_back
new characters to the end of a string.

thecowsays.push_back('p");

would instead make the string boop.

Problem 3.9

Detailed Differences — detaileddifferences
Autori — autori

Skener — skener

Conversions

In some languages, the barrier between strings and e.g. integers is more fuzzy
than in C++. In Java, for example, the code "4" + 2 would append the character

59

https://kodsport.dev/problems/veci
https://kodsport.dev/problems/detaileddifferences
https://kodsport.dev/problems/autori
https://kodsport.dev/problems/skener

CHAPTER 3. THE C++ STANDARD LIBRARY

"2 to the string "4", yielding the string "42". This is not the case in C++ (what
errors do you get if you try to do this?).

Instead, there are other ways to convert between strings and other types. The
easiest way is through using the stringstream class. A stringstream essentially
works as a combined cin and cout. An empty stream is declared by

stringstream ss;

Values can be written to the stream using the << operator and read from it using
the >> operator. This can be exploited to convert strings to and from e.g. numeric
types like this:

stringstream numToString;

numToString << 5;

string val;

numToString >> val; // val is now the string "5"

stringstream stringToNum;

stringToNum << "5";

int val;

stringToNum >> val; // val is now the integer 5

Just as with cin, you can use a stringstream to determine what type the next
word is. If you try to read from a stringstream into an int but the next word is

not an integer, the expression will evaluate to false:
stringstream ss;
ss << "notaninteger";
int val;
if (ss >> val) {
cout << "read an integer!" << endl;
} else {
cout << "next word was not an integer" << endl;
}
Problem 3.10
Filip — filip
Stacking Cups — cups

3.10 Input/Output

Input and output is primarily handled by the cin and cout objects, as previsouly
witnessed. While they are very easy to use, adjustments are sometimes necessary.

Detecting End of File

The first advanced usage is reading input until we run out of input (often called
reading until the end-of-file). Normally, input formats are constructed so that

60

https://kodsport.dev/problems/filip
https://kodsport.dev/problems/cups

3.10. INPUT/OUTPUT

you always know beforehand how many tokens of input you need to read. For
example, lists of integers are often either prefixed by the size of the list or
terminated by some special sentinel value. For those few times when we need
to read input until the end we use the fact that cin >> x is an expression that
evaluates to false if the input reading failed. This is also the case if you try to
read an int but the next word is not actually an integer. This kind of input loop
thus looks something like the following:

int num;
while (cin >> num) {
// do something with num

}

Problem 3.11
A Different Problem — different
Statistics — statistics

Input Line by Line

As we stated briefly in the C++ chapter, cin only reads a single word when used
as input to a string. This is a problem if the input format requires us to read
input line by line. The solution to this is the getline function, which reads text
until the next newline:

getline(cin, str);

Be warned that if you use cin to read a single word that is the last on its line,
the final newline is not consumed. That means that for an input such as

word
blah blah

the code

string word;
cin >> word;
string line;
getline(cin, line);
would produce an empty line! After cin >> word the newline of the line word still
remains, meaning that getline only reads the (zero) remaining characters until
the newline. To avoid this problem, you need to use cin.ignore(); to ignore the
extra newline before your getline.

Once a line has been read we often need to process all the words on the line
one by one. For this, we can use the stringstream:

61

https://kodsport.dev/problems/different
https://kodsport.dev/problems/statistics

CHAPTER 3. THE C++ STANDARD LIBRARY

stringstream line(str);
string word;
while (line >> word) {

// do something with word
}

The stringstream takes an argument that is the string you want to process. After
this, it works just like cin does, except reading input from the string instead of
the terminal. To use stringstream, add the include

#include <sstream>

Problem 3.12
Bacon Eggs and Spam — baconeggsandspam
Compound Words — compoundwords

Output Decimal Precision

Another common problem is that outputting decimal values with cout produces
numbers with too few decimals. Many problems stipulate that an answer is
considered correct if it is within some specified relative or absolute precision of
the judges’ answer. The default precision of cout is 107°. If a problem requires
higher precision, it must be set manually using e.g.

cout << setprecision(10);

If the function argument is x, the precision is set to 107*. This means that the
above statement would set the precision of cout to 1079, This precision is
normally the relative precision of the output (i.e. the total number of digits to
print). If you want the precision to be absolute (i.e. specify the number of digits
after the decimal point) you write

cout << fixed;

Problem 3.13
A Real Challenge — areal

Chapter Exercises

Problem 3.14

Apaxiaaaaaaaaaaaans! — apaxiaaans
Different Distances — differentdistances
Odd Man Out — oddmanout

62

https://kodsport.dev/problems/baconeggsandspam
https://kodsport.dev/problems/compoundwords
https://kodsport.dev/problems/areal
https://kodsport.dev/problems/apaxiaaans
https://kodsport.dev/problems/differentdistances
https://kodsport.dev/problems/oddmanout

3.10. INPUT/OUTPUT

Timebomb — timebomb
Missing Gnomes — missinggnomes

Chapter Notes

In this chapter, only the parts from the standard library we deemed most important
to problem solving were extracted. The standard library is much larger than this,
of course. While you will almost always get by using only what we discussed
additional knowledge of the library can make you a faster, more effective coder.

For a good overview of the library, cppreference.com! contains lists of the
library contents categorized by topic.

Thttp://en.cppreference.com/w/cpp

63

https://kodsport.dev/problems/timebomb
https://kodsport.dev/problems/missinggnomes
http://en.cppreference.com/w/cpp

CHAPTER 3. THE C++ STANDARD LIBRARY

64

4 |Implementation Problems

The “simplest” kind of problem we solve is those where the statement of a
problem is so detailed that the difficult part is not figuring out the solution, but
implementing it in code. This type of problem is mostly given in the form of
performing some calculation or simulating some process based on a list of rules
stated in the problem.

The Recipe
Swedish Olympiad in Informatics 2011, School Qualifiers (CC BY-SA 3.0)

You have decided to cook some food. The dish you are going to make requires
N different ingredients. For every ingredient, you know the amount you have at
home, how much you need for the dish, and how much it costs to buy (per unit).

If you do not have a sufficient amount of some ingredient you need to buy
the remainder from the store. Your task is to compute the cost of buying the
remaining ingredients.

Input
The first line of input is an integer N < 10, the number of ingredients in the
dish.

The next N lines contain the information about the ingredients, one per line.
An ingredient is given by three space-separated integers 0 < h, n,c¢ < 200 — the
amount you have, the amount you need, and the cost per unit for this ingredient.

Output
Output a single integer — the cost for purchasing the remaining ingredients
needed to make the dish.

This problem is not particularly hard. For every ingredient we need to
calculate the amount which we need to purchase. The only gotcha in the problem
is the mistake of computing this as n — h. The correct formula is max (0, n — h),
required in case of the luxury problem of having more than we need. We then
multiply this number by the ingredient cost and sum the costs up for all the
ingredients. A solution would look something like the following.

65

N

@R

CHAPTER 4. IMPLEMENTATION PROBLEMS

: procedure Recipe(N, int[] h, int[] n, int[] c)

ans «— 0
fori — OtoN—1do
ans « ans + max (0, n[i] — h[i]) - c[i]

return ans

Generally, the implementation problems are the easiest type of problems in
a contest. They do not require much algorithmic knowledge so more contestants
are able to solve them. However, not every implementation problem is easy to
code. Just because implementation problems are easy to spot, understand, and
formulate a solution to, you should not underestimate the difficulty coding them.
Contestants usually fail implementation problems either because the algorithm
you are supposed to implement is very complicated with many easy-to-miss
details, or because the amount of code is very large. In the latter case, you are
more prone to bugs because more lines of code tend to include more bugs.

Let us study a straightforward implementation problem that turned out to be
rather difficult to code.

Game Rank
Nordic Collegiate Programming Contest 2016 - Jimmy Mardell (CC BY-SA 3.0)

The gaming company Sandstorm is developing an online two player game. You
have been asked to implement the ranking system. All players have a rank
determining their playing strength which gets updated after every game played.
There are 25 regular ranks, and an extra rank, “Legend”, above that. The ranks
are numbered in decreasing order, 25 being the lowest rank, 1 the second highest
rank, and Legend the highest rank.

Each rank has a certain number of “stars” that one needs to gain before
advancing to the next rank. If a player wins a game, she gains a star. If before
the game the player was on rank 6-25, and this was the third or more consecutive
win, she gains an additional bonus star for that win. When she has all the stars
for her rank (see list below) and gains another star, she will instead gain one
rank and have one star on the new rank.

For instance, if before a winning game the player had all the stars on her
current rank, she will after the game have gained one rank and have 1 or 2 stars
(depending on whether she got a bonus star) on the new rank. If on the other
hand she had all stars except one on a rank, and won a game that also gave her a

66

bonus star, she would gain one rank and have 1 star on the new rank.

If a player on rank 1-20 loses a game, she loses a star. If a player has zero
stars on a rank and loses a star, she will lose a rank and have all stars minus one
on the rank below. However, one can never drop below rank 20 (losing a game
at rank 20 with no stars will have no effect).

If a player reaches the Legend rank, she will stay legend no matter how many
losses she incurs afterwards.

The number of stars on each rank are as follows:

Rank 25-21: 2 stars

Rank 20-16: 3 stars

Rank 15-11: 4 stars

Rank 10-1: 5 stars

A player starts at rank 25 with no stars. Given the match history of a player,
what is her rank at the end of the sequence of matches?

Input

The input consists of a single line describing the sequence of matches. Each
character corresponds to one game; ‘W represents a win and ‘L’ a loss. The
length of the line is between 1 and 10 000 characters (inclusive).

Output
Output a single line containing a rank after having played the given sequence of
games; either an integer between 1 and 25 or “Legend”.

A very long problem statement! The first hurdle is finding the energy to
read it from start to finish without skipping any details. Not much creativity
is needed here — indeed, the algorithm to implement is given in the statement.
Despite this, it is not as easy as one would think. Although it was the second
most solved problem at the contest where it was used in, it was also the one
with the worst success ratio. On average, a team needed 3.59 attempts before
getting a correct solution, compared to the runner-up problem at 2.92 attempts.
None of the top 6 teams in the contest got the problem accepted on their first
attempt. Failed attempts cost a lot. Not only in absolute time, but many forms
of competition include additional penalties for submitting incorrect solutions.

Implementation problems get much easier when you know your programming

67

CHAPTER 4. IMPLEMENTATION PROBLEMS

language well and can use it to write good, structured code. Split code into
functions, use structures, and give your variables good names and implementation
problems become easier to code. A solution to the Game Rank problem which
attempts to use this approach is given here:

#include <bits/stdc++.h>
using namespace std;
int curRank = 25, curStars = 0, consegWins = 0;

int starsOfRank() {
if (curRank >= 21) return 2;
if (curRank >= 16) return 3;
if (curRank >= 11) return 4;
if (curRank >= 1) return 5;
assert(false);

}

void addStar() {
if (curStars == starsOfRank()) {
--curRank;
curStars = 0;
}
++curStars;

}

void addwin() {
int curStarsWon = 1;
++consegWins;
if (consegWins >= 3 && curRank >= 6) curStarsWon++;

for (int i = 0; i < curStarsWon; i++) {
addStar();
}
}

void loseStar() {
if (curStars == 0) {

if (curRank == 20) return;
++curRank;
curStars = starsOfRank();
}
--curStars;

}
void addLoss() {

consegWins = 0;
if (curRank <= 20) loseStar();

68

}

int main() {

string seq;

cin >> seq;

for (char res : seq) {
if (res == 'W') addwWin();
else addLoss();
if (curRank == 0) break;
assert(1l <= curRank && curRank <= 25);
assert(0 <= curStars && curStars <= starsOfRank());

}
if (curRank == 0) cout << "Legend" << endl;
else cout << curRank << endl;

}

Note the use of the assert() function. The function takes a single boolean
parameter and crashes the program with an assertion failure if the parameter
evaluated to false. This is helpful when solving problems since it allows us to
verify that assumptions we make regarding the internal state of the program
indeed holds. In fact, when the above solution was written the assertions in it
actually managed to catch some bugs before submitting the problem!

Problem 4.1
Game Rank — gamerank

Next, we work through a complex implementation problem, starting with a
long, hard-to-read solution with a few bugs. Then, we refactor it a few times
until it is correct and easy to read.

Mate in One
Introduction to Algorithms at Danderyds Gymnasium
"White to move, mate in one."

When you are looking back in old editions of the New in Chess magazine,
you find loads of chess puzzles. Unfortunately, you realize that it was way too
long since you played chess. Even trivial puzzles such as finding a mate in one
now far exceed your ability.

But, perseverance is the key to success. You realize that you can instead use
your new-found algorithmic skills to solve the problem by coding a program to
find the winning move.

69

https://kodsport.dev/problems/gamerank

CHAPTER 4. IMPLEMENTATION PROBLEMS

You will be given a chess board, which satisfy:

* No player may castle.

* No player can perform an en passant’.

* The board is a valid chess position.

* White can mate black in a single, unique move.

Write a program to output the move white should play to mate black.

Input

The board is given as a 8 x 8 grid of letters. The letter . represent an empty
space, the characters pbnrgk represent a white pawn, bishop, knight, rook, queen
and king, and the characters PBNRQK represents a black pawn, bishop, knight,
rook, queen and king.

Output

Output a move on the form alb2, where al is the square to move a piece from
(written as the column, a-h, followed by the row, 1-8) and b2 is the square to
move the piece to.

Our first solution attempt clocks in at about 300 lines.

#include <bits/stdc++.h>
using namespace std;

#define rep(i,a,b) for (int i = (a); 1 < (b); ++1i)
#define trav(it, v) for (auto& it : v)

#define all(v) (v).begin(), (v).end()

typedef pair<int, int> ii;

typedef vector<ii> vii;

template <class T> int size(T &x) { return x.size(); }

char board[8][8];

bool iz_empty(int x, int y) {
return board[x][y] == '.';

}

bool is_white(int x, int y) {
return board[x][y] >= 'A' && board[x][y] <= 'Z';
}

1If you are not aware of this special pawn rule, do not worry — knowledge of it is irrelevant with
regard to the problem.

70

20

21 bool is_valid(int x, int y) {

2 return x >= 0 & x <8 & y >= 0 & y < 8;
a3}

24

25 int rook[8]1[2] = {

26 {1, 2},

27 {1, -2},

28 {-1, 2},

29 {-1, -2},

3 {2, 13},

32 {-2, 1},

3 {2, -1},

34 {-2, -1}

35 };

36

37 void display(int x, int y) {

38 printf("%sc%d", y + 'a', 7 - x + 1);

)

40

4 vii next(int x, int y) {

42 vii res;

43

“ if (board[x1[yl == 'P' || board[x]I[y]l == 'p') {

45 // pawn

46

47 int dx = is_white(x, y) ? -1 : 1;

48

49 if (is_valid(x + dx, y) && iz_empty(x + dx, y)) {
50 res.push_back(ii(x + dx, y));

51 }

52

53 if (is_valid(x + dx, y - 1)

54 && is_white(x, y) != is_white(x + dx, y - 1)) {
55 res.push_back(ii(x + dx, y - 1));

56 }

57

8 if (is_valid(x + dx, y + 1)

59 && is_white(x, y) != is_white(x + dx, y + 1)) {
60 res.push_back(ii(x + dx, y + 1));

61 }

62

63 } else if (board[x][y] == 'N' || board[x][y] == 'n') {
64 // knight

65

66 for (int i = 0; i < 8; i++) {

67 int nx = x + rook[i][0O],

68 ny =y + rook[i][1];

CHAPTER 4. IMPLEMENTATION PROBLEMS

if (is_valid(nx, ny) && (iz_empty(nx, ny)

is_white(x, y) != is_white(nx, ny))) {

res.push_back(ii(nx, ny));

}
}

} else if (board[x][y] == 'B' || board[x][y] == 'b') {

// bishop

for (int dx =
for (int dy
if (dx ==

-1

;o odx <= 1; dx++) {
-1; dy <= 1; dy++) {

0 & dy == 0)
continue;

if ((dx == 0) != (dy == 0))
continue;

for (int
int nx
ny =

k

y

+ X

1; 5 k++) {
+ dx * k,
dy * k;

if (!is_valid(nx, ny)) {

break

}

if (iz_empty(nx, ny)

’

res.push_back(ii(nx, ny));

}
if (!iz_empty(nx, ny)) {
break;
}
}
}
}
} else if (board[x][y] == 'R' || board[x][y]
// rook

for (int dx =

-1

;o dx <= 1; dx++) {

for (int dy = -1; dy <= 1; dy++) {
if ((dx == 0) == (dy == 0))
continue;

for (int
int nx
ny =

y

k

X
+

1; 5 k) {
+ dx * k,
dy * k;

if (!is_valid(nx, ny)) {
break;

72

|| is_white(x, y) !'= is_white(nx, ny)) {

120 }

122 if (iz_empty(nx, ny) || is_white(x, y) !'= is_white(nx, ny)) {
123 res.push_back(ii(nx, ny));
124 }

125

126 if (!iz_empty(nx, ny)) {

127 break;

128 }

129 }

130 }

131 }

132

133 } else if (board[x][y] == 'Q' || board[x][y] == 'q') {
134 // queen

135

136 for (int dx = -1; dx <= 1; dx++) {
137 for (int dy = -1; dy <= 1; dy++) {
138 if (dx == 0 && dy == 0)

139 continue;

140

141 for (int k = 1; ; k++) {

142 int nx = x + dx * Kk,

143 ny =y +dy * k;

144

145 if (!is_valid(nx, ny)) {

146 break;

147 }

148

149 if (iz_empty(nx, ny) || is_white(x, y) != is_white(nx, ny)) {
150 res.push_back(ii(nx, ny));
151 }

152

153 if (!iz_empty(nx, ny)) {

154 break;

155 }

156 }

157 }

158 }

159

160

161 } else if (board[x][y] == 'K' || board[x][y] == 'k') {
162 // king

163

164 for (int dx = -1; dx <= 1; dx++) {
165 for (int dy = -1; dy <= 1; dy++) {
166 if (dx == 0 && dy == 0)

167 continue;

169 int nx = x + dx,

CHAPTER 4. IMPLEMENTATION PROBLEMS

ny =y + dy;

if (is_valid(nx, ny) && (iz_empty(nx, ny) ||

is_white(x, y) !'= is_white(nx, ny))) {
res.push_back(ii(nx, ny));
}
}

}
} else {

assert(false);
}
return res;

}

bool is_mate() {
bool can_escape = false;
char new_board[8][8];

for (int x = 0; !can_escape && x < 8; x++) {
for (int y = 0; !can_escape && y < 8; y++) {
if (!iz_empty(x, y) && !is_white(x, y)) {

vii moves = next(x, y);
for (int i = 0; i < size(moves); i++) {
for (int j = 0; j < 8; j++)
for (int k = 0; k < 8; k++)
new_board[j][k] = board[j][k]

new_board[moves[i].first][moves[i].second] = board[x][y];

new_board[x][y] = '.';

swap(new_board, board);

bool is _killed = false;
for (int j = 0; !is_killed && j < 8; j++) {

for (int k = 0; !is_killed && k < 8; k++) {

if (!iz_empty(j, k) && is_white(j, k)) {
vii nxts = next(j, Kk);

for (int 1 = 0; 1 < size(nxts); 1++) {

if (board[nxts[l].first][nxts[1l].second]

is_killed = true;
break;
}
}
}

74

}
}

swap (new_board, board);

if (!is_killed) {
can_escape = true;
break;
}
}

}
}
}

return !can_escape;

}

int main()
{
for (int i = 0; i < 8; i++) {
for (int j = 0; j < 8; j++) {
scanf("%c", &board[i]l[j]);

}

scanf("\n");

}
char new_board[8][8];
for (int x = 0; x < 8; x++) {
for (int y = 0; y < 8; y++) {
if (liz_empty(x, y) && is_white(x, y)) {
vii moves = next(x, y);
for (int i = 0; i < size(moves); i++) {
for (int j = 0; j < 8; j++)
for (int k = 0; k < 8; k++)
new_board[j][k] = board[j]l[k];

new_board[moves[i].first][moves[i].second]
new_board[x][y] = '.';

swap(new_board, board);

if (board[moves[i].first][moves[i].second]
moves[i].first == 0) {

= board[x][y];

== 'P' &

291
292

293

CHAPTER 4. IMPLEMENTATION PROBLEMS

board[moves[i].first][moves[i].second] = 'Q"';
if (is_mate()) {
printf("%c%d%c%d\n", y + 'a', 7 - x + 1,
moves[i].second + 'a', 7 - moves[i].first + 1)
return 0;

}

board[moves[i].first][moves[i].second] = 'N';
if (is_mate()) {
printf("%c%d%c%d\n", y + 'a', 7 - x + 1,
moves[i].second + 'a', 7 - moves[i].first + 1)
return 0;

}

} else {
if (is_mate()) {
printf("%sc%d%sc%sd\n", y + 'a', 7 - x + 1,
moves[i].second + 'a', 7 - moves[i].first + 1)
return 0;
}
}

swap (new_board, board);
}
}
}
}

assert(false);

return 0;

That is a lot of code! Note how there are a few obvious mistakes which
makes the code harder to read, such as typo of iz_empty instead of is_empty, or
how the list of moves for the knight is called rook. Our final solution reduces
this to less than half the size.

Exercise 4.1. Read through the above code carefully and consider if there are
better ways to solve the problem. Furthermore, it has a bug — can you find it?

First, let us clean up the move generation a bit. Currently, it is implemented
as the function next, together with some auxillary data (lines 25-179). It is not
particularly abstract, plagued by a lot of code duplication.

The move generation does not need a lot of code. Almost all the moves of
the pieces can be described in the same way, as: “pick a direction out of a list
D and move at most L steps along this direction, stopping either before exiting

76

o v s woN

0 =

™

o w s oW

the board or taking your own piece, or when taking another piece.”. For the
king and queen, D is all 8 directions one step away, with L = 1 for the king and

L

= oo for the queen.

Implementing this abstraction is done with little code.

const vii DIAGONAL = {{-1, 1}, {-1, 1}, {1, -1}, {1, 1}};
const vii CROSS = {{0, -1}, {0, 1}, {-1, 0}, {1, 0}};
const vii ALL_MOVES = {{-1, 1}, {-1, 1}, {1, -1}, {1, 1},

{0, -1}, {0, 1}, {-1, 0}, {1, 0}};

const vii KNIGHT = {{-1, -2}, {-1, 2}, {1, -2}, {1, 2},

{-2, -1}, {-2, 1}, {2, -1}, {2, 1}};

vii directionMoves(const vii& D, int L, int x, int y) {

}

vii moves;
trav(dir, D) {
rep(i,1,L+1) {
int nx = x + dir.first = i, ny = y + dir.second * i;
if (!isValid(nx, ny)) break;
if (isEmpty(nx, ny)) moves.emplace_back(nx, ny);
else {

if (isWhite(x, y) != isWhite(nx, ny)) moves.emplace_back(nx, ny);

break;
}
}
}

return moves;

A short and sweet abstraction, that will prove very useful. It handles all
possible moves, except for pawns. These have a few special cases.

vii pawnMoves(int x, int y) {

vii moves;

if (x ==0 || x==7) {
vii queenMoves = directionMoves(ALL_MOVES, 16, x, y);
vii knightMoves = directionMoves(KNIGHT, 1, x, y);
queenMoves.insert(queenMoves.begin(), all(knightMoves));
return queenMoves;

}

int mv = (isWhite(x, y) ? - 1 : 1)

if (isvValid(x + mv, y) && isEmpty(x + mv, y)) {
moves.emplace_back(x + mv, y);
bool canMoveTwice = (isWhite(x, y) ? x == rx == 1)

if (canMoveTwice && isValid(x + 2 % mv, y) && isEmpty(x + 2 * mv, y)) {

moves.emplace_back(x + 2 * mv, y);
}
}
auto take = [&](int nx, int ny) {
if (isValid(nx, ny) && !isEmpty(nx, ny)
&& isWhite(x, y) != isWhite(nx, ny))

77

20
21
22
23
24

™

o w oW

™

o w o oW

CHAPTER 4. IMPLEMENTATION PROBLEMS

moves.emplace_back(nx, ny);
b
take(x + mv, y - 1);
take(x + mv, y + 1);
return moves;

This pawn implementation also takes care of promotion, rendering the logic
previously implementing this obsolete.
The remainder of the move generation is now implemented as:

vii next(int x, int y) {

vii moves;

switch(toupper(board[x]1[y])) {
case 'Q': return directionMoves(ALL_MOVES, 16, X, y);
case 'R': return directionMoves(CROSS, 16, X, y);
case 'B': return directionMoves(DIAGONAL, 16, x, y);
case 'N': return directionMoves (KNIGHT, 1, x, y);
case 'K': return directionMoves(ALL_MOVES, 1, x, y);
case 'P': return pawnMoves(x, y);

}

return moves;

}

These make up a total of about 50 lines — a reduction to a third of how the
move generation was implemented before. The trick was to rework all code
duplication into a much cleaner abstraction.

We also have a lot of code duplication in the main (lines 234-296) and is_mate
(lines 181-232) functions. Both functions loop over all possible moves, with
lots of duplication. First of all, let us further abstract the move generation to not
only generate the moves a certain piece can make, but all the moves a player can
make. This is done in both functions, so we should be able to extract this logic
into only one place:

vector<pair<ii, ii>> getMoves(bool white) {
vector<pair<ii, ii>> allMoves;
rep(x,0,8) rep(y,0,8) if (!isEmpty(x, y) && isWhite(x, y) == white) {
vii moves = next(x, y);
trav(it, moves) allMoves.emplace_back(ii{x, y}, it);
}
return allMoves;

}

We also have some duplication in the code making the moves. Before
extracting this logic, we will change the structure used to represent the board. A

78

o v s woN

-

[

o w s oW

char[81[8] is a tedious structure to work with. It is not easily copied or sent as
parameter. Instead, we use a vector<string>, typedef’d as Board:

typedef vector<string> Board;

We then add a function to make a move, returning a new board:

Board doMove(pair<ii, ii> mv) {
Board newBoard = board;
ii from = mv.first, to = mv.second;
newBoard[to.first][to.second] = newBoard[from.first][from.second];
newBoard[from.first][from.second] = '."';
return newBoard;

Hmm... there should be one more thing in common between the main and
is_mate functions. Namely, to check if the current player is in check after a move.
However, it seems this is not done in the main function — a bug. Since we do
need to do this twice, it should probably be its own function:
bool inCheck(bool white) {

trav(mv, getMoves(!white)) {

ii to = mv.second;
if (!isEmpty(to.first, to.second)

&& isWhite(to.first, to.second) == white
&& toupper(board[to.first][to.second]) == 'K') {
return true;
}
}
return false;
}

Now, the long is_mate function is much shorter and readable, thanks to our
refactoring:

bool isMate() {

if (!inCheck(false)) return false;

Board oldBoard = board;

trav(mv, getMoves(false)) {
board = doMove(mv);
if (!inCheck(false)) return false;
boa