Principles of Algorithmic Problem Solving

Johan Sannemo

2025

Principles of Algorithmic Problem Solving, 1% edition
ISBN 978-91-519-9041-5

Published by Adversarial AB, Solna
© Johan Sannemo 2025

The statements of example problems are under copyright of their respective authors.

Some content in this book is licensed under a Creative Commons license. It is marked
as “CC license-terms license-version”. The CC BY-SA 3.0 license terms can be found at
creativecommons.org/licenses/by-sa/3.0/, and the CC BY 3.0 license terms can be found

at creativecommons.org/licenses/by/3.0/.

creativecommons.org/licenses/by-sa/3.0/
creativecommons.org/licenses/by/3.0/

Contents

Introduction

I Preliminaries

1 Algorithms and Problems

11 Computational Problems
12 Algorithms
1.3 Programming Languages
1.4 PseudoCode
1.5 OnlineJudges

2 Programming in C++

21 HelloWorld!
2.2 Variablesand Types
23 InputandOutput
2.4 OPerators e
2.5 IfStatements
2.6 ForLoops e
27 WhileLoops
28 Functions
2.9 Structures e e
210 ATTAYSt
211 Lambdas
2.12 ThePreprocessor.

3 The C++ Standard Library

31 DataStructures. e
3.2 Math
33 Algorithms
3.4 Strings
3.5 Input/Output

4 Implementation Problems
41 StructuringyourCode oL

iii

vii

O o NN B~ W W

11
1
14
18
19
21
23
25
25
28
31
33
34

37
37
45
45
47
49

53

CONTENTS

5

II

10

iv

Time Complexity

5.1 The Complexity of Insertion Sort

5.2 Asymptotic Notation
5.3 NP-complete Problems

5.4 Other Types of Complexities

5.5 The Importance of Constant Factors

Data Structures

6.1 Dynamic Arrays . . .
6.2 Stacks
6.3 Queues
6.4 Priority Queues . . .
6.5 Bitsets
6.6 Hash Tables
Recursion

71 Recursive Definitions

72 The Time Complexity of Recursive Functions
73 Choice e
7.4 Multidimensional Recursion

7.5 Recursion vs. Iteration

Graph Theory

81 Graphs.........
8.2 Representing Graphs
8.3 Breadth-First Search .
8.4 Depth-First Search . .
85 Trees..........
8.6 Topological Sorting .

Common Techniques

Brute Force

91 Generateand Test
9.2 Backtracking L
9.3 ParameterFixing L o o o
9.4 MeetintheMiddle
Greedy Algorithms

101 Locally Optimal Choices

67
67
70
74
74
75

77
77
81
82
83
87
88

95
95
98
99
103
104

107
107
110
112
120
123
127

131

133
133
136
144
147

153

CONTENTS

11

12

13

III

14

15

16

102 ExtremeValues.
10.3 Sortingand Exchanges
10.4 Intervals.
10.5 Constructions i i i i e

Dynamic Programming

111 Making ChangeRevisited
1m2 PathsinaDAG.
11.3 Standard Techniques
11.4 Standard Problems.

Divide and Conquer

12.1 Recursive Constructions
122 SEQUEIICES .« o v v vt e e e e
123 BinarySearch.
12.4 Centroids e

Data Structures

131 Union-Find e
132 RangeQueries
13.3 SlidingWindows oo

Other Topics

Graph Algorithms

141 Weighted ShortestPath
14.2 BulerianWalks
14.3 The Depth-FirstSearch
14.4 Minimum Spanning Trees

Maximum Flows

151 FlowNetworks
152 Edmonds-Karp
15.3 Applicationsof Flows

Game Theory

16.1 Combinatorial Games
16.2 Mathematical Techniques
163 Game Graphs
16.4 CyclicGames
16.5 MInimax e e e

173
173
175
178
193

241

243
243
257
259
271

CONTENTS

17

18

19

Number Theory
Divisibility
Prime Numbers
The Euclidean Algorithm
Modular Arithmetic

17.1
17.2
17.3
17.4
17.5

Combinatorics
18.1 The Addition and Multiplication Principles
Permutations
Ordered and Unordered Subsets

18.2
18.3
18.4

18.5 Invariants

Strings

19.1 Tries
19.2 String Matching
19.3 Hashing

Competition Strategy
Aa 101

Mathematical Notation
B.a Sets
B.2 Functions
B3

B.4 Sums and Products

Hints

Solutions

Bibliography

Index

vi

Euler’s Totient Function

The Principle of Inclusion and Exclusion . .

A2 ICPC.

Sequences and Intervals

305
305

311
318
328
335

34
341
345
349
361
365

375
375
379
382

393
393
395

399
399
401
401
402

405

411

437

441

Introduction

Algorithmic problem solving is the art of formulating efficient methods that solve problems
of a mathematical nature. From the many numerical algorithms developed by the ancient
Babylonians to the founding of graph theory by Euler, algorithmic problem solving has
been a popular intellectual pursuit during the last few thousand years. For a long time,
it was a purely mathematical endeavor with algorithms meant to be executed by hand.
During the recent decades algorithmic problem solving has evolved. What was mainly a
topic of research became a mind sport known as competitive programming. As a sport
algorithmic problem solving rose in popularity, with the largest competitions attracting
tens of thousands of programmers. While its mathematical counterpart has a rich literature,
there are only a few books on algorithms with a strong problem solving focus.

The purpose of this book is to contribute to the literature of algorithmic problem
solving in two ways. First of all, it tries to fill in some holes in existing books. Many
topics in algorithmic problem solving lack any treatment at all in the literature - at least
in English books. Much of the content is instead documented only in blog posts and
solutions to problems from various competitions. While this book attempts to rectify this,
it is not to detract from those sources. Many of the best treatments of an algorithmic topic
I have seen are as part of a well-written solution to a problem. However, there is value in
completeness and coherence when treating such a large area. Secondly, I hope to provide
another way of learning the basics of algorithmic problem solving by helping the reader
build an intuition for problem solving. A large part of this book describes techniques
using worked-through examples of problems. These examples attempt not only to describe
the manner in which a problem is solved, but also to show how a thought process might
be guided to yield the insights necessary to arrive at a solution.

This book is different from pure programming books and most other algorithm text-
books. Programming books are mostly either in-depth studies of a specific programming
language or describe various programming paradigms. A single language is used in this
book - C++. The chapters on C++ exists for the sole purpose of enabling those readers
without prior programming experience to implement the solutions to algorithm prob-
lems. Such a treatment is necessarily minimal and teaches neither good coding style
nor advanced programming concepts. Algorithm textbooks teach primarily algorithm
analysis, basic algorithm design, and some standard algorithms and data structures. They
seldom include as much problem solving as this book does. The book also falls somewhere
between the practical nature of a programming book and the heavy theory of algorithm
textbooks. This is in part due to the booK’s dual nature of being not only about algorithmic
problem solving, but also competitive programming to some extent. As such there is more

vii

INTRODUCTION

real code in the form of C++ implementations of algorithms included compared to most
algorithm books.

Acknowledgments. First and foremost, thanks to Per Austrin who provided much
valuable advice and feedback during the writing of this book. Thanks to Simon and
Marten who have competed with me for several years as Omogen Heap. A lot of the
knowledge in this book has its roots in you. Thanks to the Kattis team for providing a
great online system for all the exercises, especially Greg Hamerly who carefully reviewed
the over one hundred exercises that was added to Kattis for this book. Finally, thanks to
several others who have read through drafts and caught numerous of my mistakes.

READING THIS BoOK

This book consists of three parts. The first part contains preliminary background, such
as algorithm analysis, basic programming in C++ and introductions to data structures,
recursion and graph theory. With an undergraduate education in computer science most
of the content in these chapters is probably familiar to you. It is reccommended that you at
least skim through the first part since the remainder of the book assumes you know the
contents of the preliminary chapters.

The second part deals with basic paradigms in problem solving. They give you impor-
tant techniques and principles that are reused in many of the later topics as well. Some
of it should be familiar if you have taken a course in algorithms and data structures. The
take on those topics is a bit different compared to such a course, however. The chapters in
this part are structured so that a chapter builds upon only the preliminaries and previous
chapters to the largest extent possible.

In the third part, we study various topics that build upon these common techniques,
many which are computational applications of different mathematical areas. While they
are still organized to depend only on earlier chapters to the largest extent possible, there
might sometimes be cross-references that are hard to avoid. You can to a larger degree
choose what topics you wish to study, though you will benefit greatly from having read
the first two parts.

The book ends with several appendices: tips and strategy for participating in algorith-
mic problem solving competitions, mathematical background for preuniversity students,
and hints and solutions for selected exercises.

When reading this book, know that every problem and technique was chosen with
care; every step on the way to a solution added to provide value. Sometimes, this can
make the book feel boring - a solution can take a long time tracing out the intuition
behind some small step, or show partial solutions that are unused in the final result. At
other times, missing a single sentence can leave you with a crucial gap in your knowledge.
I have tried to make sure that every sentence written is important. When the book is

viii

INTRODUCTION

long-winding, trust that it is useful, and when difficult, endure to make sure you attain
the deep understanding I hope this book will be able to provide.

Similarly, the exercises are meant as attempts for you to construct some crucial knowl-
edge on your own. There may be fewer end-of-chapter exercises than you might be used
to in a textbook, and more exercises inlined in chapters. This is because we expect you
to solve all inline exercises as part of the reading of the book. Sometimes, the text after
an exercise will assume that you have read and solved the exercise. The lecture analogue
would be the lecturer pausing to ask the class a question; only giving an answer if none is
provided by the class. Since this is a book, you are blessed with unlimited time to think
in contrast to the lecture setting, where you typically get on the order of minutes. Some
exercises took the author a long time to solve at first, so do not feel disparaged when you
find one difficult. At the back of the book, you can find hints and solutions for selected
exercises. If you fail to solve an exercise, first check if it has a hint, and give it another
attempt.

This book can also be used to improve your competitive programming skills. Some
parts are unique to competitive programming (in particular Appendix A on contest
strategy). This knowledge is extracted into competitive tips:

Competitive Tip

A competitive tip contains some information specific to competitive programming. These can
be safely ignored if you are interested only in the problem solving aspect and not implementing
solutions in code.

The book often refers to coding exercises that are available online, that you can submit
implemented solutions to:

Problem o.1.
Problem Name problemid

They are available mainly on the Kattis online judge, but sometimes on other online
judges as well. The URL of such a problem is heap.link/problem/problemid. To make sure
that links can be kept up-to-date, they are all linked through the book’s web page rather
than to judges directly. Certain problems are split up into different subtasks that include
constraints to make the problem easier. When we give an exercise where you are meant
only to do some subtasks, we state this along the exercise like so:

Problem o.2.
Problem Name problemid (subtasks 2, 3)

ix

https://heap.link/problem/problemid
heap.link/problem/problemid
https://heap.link/problem/problemid

INTRODUCTION

Part1

Preliminaries

CHAPTER 1

Algorithms and Problems

The greatest technical invention of the last century was probably the digital general purpose
computer. It was the start of the revolution that provided us with the Internet, smartphones,
tablets, and the computerization of society.

To harness the power of computers, we use programming. Programming is the art of
developing a solution to a computational problem in the form of a set of instructions that a
computer can execute. These instructions are what we call code, and the language in which
they are written a programming language. The abstract method that such code describes is
what we call an algorithm.

The aim of algorithmic problem solving is thus to, given a computational problem,
devise an algorithm that solves it. One does not necessarily need to complete the full
programming process (i.e. write code that implements the algorithm in a programming
language) to enjoy solving algorithmic problems. However, it often provides more insight
and trains you at finding simpler algorithms to problems.

In this chapter, we begin our journey into algorithmic problem solving by taking a
closer look at these concepts and showing a solution to a common problem.

11 Computational Problems

A computational problem generally consists of two parts. First, it needs an input descrip-
tion, such as “a sequence of integers’, “a text string”, or some other kind of mathematical
object. Using this input, we have a goal which we want to accomplish defined by an
output description. For example, a computational problem might require us to sort a given

sequence of integers. This particular problem is called the Sorting Problem:

Sorting
Given a sequence of N integers ao, a1, ..., an—1, sort it in ascending order, i.e. from the lowest to the
highest.

A particular input to a computational problem is called an instance of the problem.
To the sorting problem, the sequence 3, 6,1, -1,2, 2 is an instance. The correct output for
this particular instance is -1,1, 2,2, 3, 6.
Exercise 1.1. If you were given cards with 5 different integers between 1 and 1000 000

written on them, how would you sort them in ascending order? How would your approach
change if you had 30 integers? 1000? 1000 000?

CHAPTER 1. ALGORITHMS AND PROBLEMS

Some variations of this problem format appears later (such as problems without inputs)
but in general this is what the problems look like.

Competitive Tip

Problem statements sometimes contain huge amounts of text. Skimming through the input and
output sections before any other text in a problem can often give you a quick idea about its topic
and difficulty. This helps with determining what problems to solve first when posed with a large
number of problems and little time.

Exercise 1.2. What are the input and output descriptions for the following computational
problems?

1. Compute the greatest common divisor (see Def. 17.5, page 318 if you are not familiar
with the concept) of two numbers.

2. Find a root (i.e. a zero) of a polynomial.

3. Multiply two numbers.

Exercise 1.3. Consider the following problem. I am thinking of an integer between 1 and
100. Your task is to find this number by giving me integers, one at a time. I will tell you
whether the given integer is higher, lower or equal to x.

This is an interactive, or online, computational problem. How would you describe the
input and output to it? Why do you think it is called interactive?

1.2 Algorithms

Algorithms are solutions to computational problems. They define methods that use the
input to a problem in order to produce the correct output. A computational problem can
have many solutions. Efficient algorithms to solve the sorting problem form an entire
research area! Let us look at one possible sorting algorithm, called selection sort, as an
example.

Selection Sort
We construct the answer, the sorted sequence, iteratively one element at a time, starting
with the smallest.

Assume that we have chosen and sorted the K smallest elements of the original se-
quence. Then, the smallest unchosen element remaining in that sequence must be the
(K +1)’st smallest element of the original sequence. By finding that element and appending
it to the already sorted K smallest elements we get the sorted K + 1 smallest elements of

the output.
If we repeat this process N times, the result is the N numbers of the original sequence,
but sorted.]

1.2. ALGORITHMS

EREEENENENEERET NN RN

(a) The starting sequence (3,6,1,-1,2,2). (b) The smallest element of the sequence is
-1, so this is the first element of the sorted se-
quence.

o Jlsle [2 2| [0 |2 []6][2]

(c) The next element is found by removing the (d) Here, there is no unique smallest element.
-1 and finding the smallest remaining element, We can choose any of the two 2's in this case.
1

(ol fe e s le] [t fe2]2]s 6]

(e) The next element is the other 2. (f) The last two elements chosen are 3 followed
by the 6, completing the sort.

Figure 1.1: An example execution of selection sort.

You can see this algorithm performed on our previous example instance in Figures 1.1a-
raf.

So far, we have been vague about what exactly an algorithm is. Looking at our selection
sort example, we do not have any particular structure or rigor in the description of our
method. There is nothing inherently wrong with describing algorithms this way. It is easy
to understand and gives the writer an opportunity to provide context as to why certain
actions are performed, making the correctness of the algorithm more obvious. The main
downsides of such a description are ambiguity and a lack of detail.

Until an algorithm is described in sufficient detail, it is possible to accidentally abstract
away operations we may not know how to perform behind a few English words. As a
somewhat contrived example, our plain text description of selection sort includes actions
such as “choosing the smallest number of a sequence”. While such an operation may seem
very simple to us humans, algorithms are generally constructed with regards to some
kind of computer. Unfortunately, computers can not map such English expressions to
their code counterparts yet. Instructing a computer to execute an algorithm requires us
to formulate our algorithm in steps small enough that even a computer knows how to
perform them. In this sense, a computer is rather stupid.

The English language is also ambiguous. We are sloppy with references to “this variable”
and “that set”, relying on context to clarify meaning for us. We use confusing terminology
and frequently misunderstand each other. Real code does not have this problem. It forces
us to be specific with what we mean. However, as all programmers know, we often manage
to construct highly specific algorithms that do the wrong thing due to our own erroneous
thought processes.

In the book, we generally describe our algorithms in a representation called pseudo

CHAPTER 1. ALGORITHMS AND PROBLEMS

code (Section 1.4), accompanied by an online exercise to implement the code. Sometimes,
we instead give explicit code that solves a problem. This is the case whenever an algorithm
is very complex, or care must be taken to make the implementation efficient. The goal
is that you should get to practice understanding pseudo code, while still ending up with
correct implementations of the algorithms (thus the online exercises).

Exercise 1.4. What common algorithms do you know, for example from school?

Exercise 1.5. Attempt to write down formally the descriptions of your approaches to sorting
from Exercise 1.1.

Exercise 1.6. Construct an algorithm that solves the guessing problem in exercise 1.3 using
as few questions as possible. How many questions does it use?

Correctness
One subtle, albeit important, point that we glossed over is what it means for an algorithm
to actually be correct.

There are two common notions of correctness — partial correctness and total correct-
ness. Partial correctness requires an algorithm to, upon termination, have produced an
output that fulfills all the criteria laid out in the output description. Total correctness addi-
tionally requires an algorithm to finish within finite time. When we talk about correctness
of our algorithms later on, we generally focus on the partial correctness. Termination is
instead proved implicitly, as we consider a more granular measure of efficiency (called
time complexity, in Chapter 5) than just finite termination. This measure implies the
termination of the algorithm, completing the proof of total correctness.

Proving that the selection sort algorithm finishes in finite time is quite easy. It performs
one iteration of the selection step for each element in the original sequence (which is
finite). Furthermore, each such iteration can be performed in finite time by looking at
each remaining element of the selection when finding the smallest one. The remaining
sequence is a subsequence of the original one and is therefore also finite.

Proving that the algorithm produces the correct output is a bit more difficult to prove
formally. The main idea behind a formal proof is contained within our description of the
algorithm itself.

While this definition seems clear enough - our algorithm should simply do what the
problem asks of it! — we occasionally compromise on both conditions at later points in the
book. Generally, we are satisfied with an algorithm terminating in expected finite time or
answering correctly with, say, probability 0.75 for every input. Similarly, we are sometimes
happy to find an approximate solution to a problem. What this means more concretely
becomes clear in due time when we study such algorithms.

Competitive Tip

Proving your algorithm correct is sometimes quite difficult. In a competition, a correct algorithm

1.3. PROGRAMMING LANGUAGES

is correct even if you cannot prove it. If you have an idea you think is correct it may be worth
testing. This is not a strategy without problems though, since it makes distinguishing between an
incorrect algorithm and an incorrect implementation even harder.

Exercise 1.7. Prove the correctness of your algorithm to the guessing problem from Exer-
cise 1.6 and your sorting algorithms from Exercise 1.5.

Exercise 1.8. Why would an algorithm that is correct with e.g. probability 0.75 still be very
useful to us?

Why is it important that such an algorithm is correct with probability 0.75 on every
problem instance, instead of always being correct for 75% of all cases?

1.3 Programming Languages

The purpose of programming languages is to formulate methods at a level of detail where
a computer could perform them. When describing algorithms to other people, we're
mostly happy with describing what we want to do. Programming languages instead
require considerably more constructive descriptions. Computers are quite basic creatures
compared to us humans. They only understand a very limited set of instructions such as
adding numbers, multiplying numbers, or moving data around within its memory. The
syntax of programming languages often seems a bit arcane at first, but it grows on you
with coding experience.

To complicate matters further, programming languages themselves define a spectrum
of expressiveness. On the lowest level, programming deals with electrical current in your
processor. Current above or below a certain threshold is used to represent the binary
digits 0 and 1. Above these circuit-level electronics lies a processor’s own programming,
often called microcode. Using this, a processor implements machine code, such as the x86
instruction set. Machine code is often written using a higher-level syntax called Assembly.
While some code is written in this rather low-level language, we mostly abstract away
details of them in high-level languages such as C++ (this book’s language of choice).

This knowledge is somewhat useless from a problem solving standpoint, but intimate
knowledge of how a computer works is of high importance in software engineering, and is
occasionally helpful in programming competitions. Therefore, you should not be surprised
about certain remarks relating to these low-level concepts.

These facts also provide some motivation for why we use something called compilers.
When programming in C++ we can not immediately tell a computer to run our code. As
you now know, C++ is code at a higher level than what the processor of a computer can
run. A compiler takes care of this problem by translating our C++ code into the machine
code that the processor knows how to handle. It is a program of its own and takes the code
files we write as input and produces executable files that we can run on the computer. The
process and purpose of a compiler is somewhat like what we do ourselves when translating

N

2 *® N 22w b ow

10:

CHAPTER 1. ALGORITHMS AND PROBLEMS

a method from English sentences or our own thoughts into the lower level language of
Ct+.

Other than C++ which the book uses, there are two other popular languages for
competitive programming called Python and Java. They are slightly easier languages than
C++, but tend to produce slower code.

1.4 Pseudo Code

Somewhere in between describing algorithms in English text and in a programming
language we find something called pseudo code. As hinted by its name it is not quite
real code. The instructions we write are not part of the programming language of any
particular computer. The point of pseudo code is to be independent of the computer it is
implemented on. Instead, it tries to convey the main points of an algorithm in a detailed
manner so that it can easily be translated into any particular programming language. We
sometimes fall back to the liberties of the English language in pseudo code. As the book
progresses, the pseudo code assumes more about what we can implement in code without
a detailed description. For a completely new programmer, translating the simple “choose
the smallest number in a sequence” to computer code is hard, while you in a few chapters
will find “check if the graph is a tree” to be a perfectly good level of abstraction.

With an explanation of this distinction in hand, let us look at a concrete example of
pseudo code. The honor of being an example again falls upon selection sort, now described
in pseudo code:

: procedure SELECTIONSORT(sequence A)

Let A’ be an empty sequence
while A is not empty do
minlndex < 0
for every element A; in A do
if Ai < Aminindex then
minlndex « i
Append A pinndex to A’
Remove A pinindex from A

return the sequence A’

Pseudo code reads somewhat like our English language description of the algorithm,
except the actions are broken down into much smaller pieces. Most of the constructs in
pseudo code are more or less obvious. The values in parenthesis after the procedure name
is the input to the procedure, while the “return” keyword tells us what value the procedure
produces. The notation variable < value is how we denote an assignment in pseudo code.
For those without programming experience, this means that the variable named variable
now takes the value value. When referring to elements in lists, the indices start with 0.

Pseudo code appears in the book when we try to explain some part of a solution in

1.5. ONLINE JUDGES

great detail but programming language specific aspects would draw attention away from
the algorithm itself.

Competitive Tip

In team competitions where a team shares a single computer, they will often have solved problems
waiting to be coded. Writing pseudo code of the solution to one of these problems while waiting
for computer time is an efficient way to parallelize your work. This can be practiced by writing
pseudo code on paper even when you are solving problems by yourself.

Exercise 1.9. Write pseudo code for your algorithm to the guessing problem from Exer-
cise 1.6.

1.5 Online Judges

The problem exercises in this book are located on so called online judges, primarily the
Kattis online judge at heap.link/judge:kattis. They contain large collections of computa-
tional problems, and allow you to submit programs you have written to solve the problems.
A judge runs your program on a large number of predetermined instances of the problem
called the problem’s test data.

Problems on an online judge include some additional information compared to our
example problem. Since actual computers only have a finite amount of time and memory,
the amount of these resources available to our programs are limited when solving an
instance of a problem. This also means that the size of inputs to a problem need to
be constrained as well. A more complete version of the sorting problem as given in a
competition would include these constraints along with exactly how input and output is
specified. It could look something like this:

Sorting - sorting
Time: 1s, memory: 100 MB
Your task is to sort a sequence of integers in ascending order, i.e. from the lowest to the highest.

Input
The input is a sequence of N integers (1 < N < 1000) aq, a1, ..., an—1 (|ai| < 10%).

Output
Output a permutation a’ of the sequence a, such that ag < af < ... < ay_,.

For these problems, we typically give the problem ID in the title as well, accessible at
https://heap.link/problem/problemid.

If your program exceeds the allowed resource limits (i.e. takes too much time or
memory), crashes, or gives an invalid output, the judge will tell you so with a rejected
judgment. There are many kinds of rejected judgments, such as Wrong Answer, Time Limit
Exceeded, and Run-time Error. These mean that your program gave an incorrect output,

https://heap.link/judge:kattis
https://heap.link/problem/sorting
https://heap.link/problem/problemid

CHAPTER 1. ALGORITHMS AND PROBLEMS

took too much time, and crashed, respectively. If your program passes all the instances, it
will be be given the Accepted judgment.

Getting a program accepted by an online judge is not the same as having a correct
program - it is a necessary but not sufficient criterion for correctness. This can sometimes
be exploited during competitions by writing a knowingly incorrect solution that you think
passes all test cases designed by the judges of the competition.

We strongly recommend that you get accounts on the online judges used in the prob-
lems so that you can follow along with the book’s exercises.

Exercise 1.10. Register an account on the Kattis online judge.

Many other online judges exists, for example Codeforces (heap.link/judge: codeforces)
and AtCoder (heap.link/judge:atcoder). Both are platforms which run regular contests
and have large archives of problems.

ADDITIONAL EXERCISES

Exercise 1.11. Pick two sorting algorithms from Wikipedia’s list of sorting algorithms:
en.wikipedia.org/wiki/Category:Sorting_algorithms. Try to understand them and their
proof of correctness. Use them by hand to sort the integers 5,1,2,7,5, 6,2, 9.

Exercise 1.12. Consider the following problem:

Palindrome
A word is a palindrome if it reads the same forwards and backwards, for example tacocat, madam, or
abba. Determine if a word is a palindrome.

1. Devise an algorithm to solve it,
2. formalize the algorithm and write it down in pseudo code, and

3. prove the correctness of the algorithm.

NOTES

The introductions given in this chapter are very bare, mostly stripped down to what you
need to get by when solving algorithmic problems.

Many other books delve deeper into the theoretical study of algorithms than we do, in
particular regarding subjects not relevant to algorithmic problem solving. Introduction to
Algorithms [11] is a rigorous introductory text book on algorithms with both depth and
breadth.

For a gentle introduction to the technology that underlies computers, CODE [40] is a
well-written journey from the basics of bits and bytes all the way up to assembly code and
operating systems. It requires no knowledge of programming to read.

10

https://heap.link/judge:codeforces
https://heap.link/judge:atcoder
https://en.wikipedia.org/wiki/Category:Sorting_algorithms

CHAPTER 2

Programming in C++

In this chapter we learn the basics of the C++ programming language. It is the most
common programming language within the competitive programming community for a
few reasons (aside from C++ being a popular language in general). Programs coded in C++
are generally somewhat faster than those written in most other competitive programming
languages. There are also many routines in the accompanying standard code libraries that
are useful when implementing algorithms.

Of course, no language is without downsides. C++ is difficult to learn as your first
programming language, to say the least. Its error management is unforgiving, often causing
erratic behavior in programs instead of crashing with an error. Programming certain
things becomes quite verbose, compared to many other languages.

After bashing the difficulty of C++, you might ask if it really is the best language in
order to get started with algorithmic problem solving. While there certainly are simpler
languages we believe that the benefits outweigh the disadvantages in the long run even
though it demands more from you as a reader right now. Either way, it is definitely the
language we have the most experience of teaching problem solving with.

When you study this chapter, you will see a lot of example code. Type this code and
run it. We can not really stress this point enough. Learning programming from scratch
— in particular a complicated language such as C++ - is not possible unless you try the
concepts yourself. We strongly recommend that you do every exercise in this chapter,
even more so than in the other chapters.

Finally, know that our treatment of C++ is minimal. We do not explain all the details
behind the language, nor do we teach good coding style or general software engineering
principles. In fact, we frequently make use of bad coding practices. If you want to delve
deeper into programming, you can find more resources in the chapter notes.

2.1 Hello World!

Before we start coding you need to install a compiler for C++ and (optionally) a code editor.
We recommend the editor Visual Studio Code that you can download from heap.link/ide:
vscode. Installation procedures for a C++ compiler for different operating systems tend
to rot quickly and requires a lot of pasting commands, so we have placed them all online
at heap.link/ide:install to try and keep them up-to-date as much as possible. If you
are unable to install new programs on your computer, heap.link/ide:online contains

11

https://heap.link/ide:vscode
https://heap.link/ide:vscode
https://heap.link/ide:install
https://heap.link/ide:online

(<IN N N

CHAPTER 2. PROGRAMMING IN C++

references to some online editors and compilers that you can use instead. They give you a
bit less control over compilation and makes it harder to run programs using local files for
input, things that can be beneficial when solving programming problems.

Exercise 2.1. Follow the above instructions to get a C++ compiler and editor ready.

Now that you have a compiler and editor ready; it is time to learn the basic structure
of a C++ program. Our first example is a classical one when learning a new programming
language: printing the text Hello world!. We also get to solve our first online judge problem
in this section.

Exercise 2.2. You will learn many concepts within C++ throughout this chapter. Take
written notes of how they are used as you go along to make your own cheat sheet as a
future reference (you will need it).

Start by opening your editor and creating a new file. Save the file as hello.cpp. Make
sure to save it somewhere you can find it.
Now, type the code from Snippet 2.1 into your editor.

Snippet 2.1: Hello World!

#include <iostream>
using namespace std;

int main() {
// Print Hello World!
cout << "Hello World!" << endl;

}

Compile and run the program using the online instructions at heap.link/ide:compile.
The output window should now contain the text Hello wortd!. Ifit doesn’t, you probably got
either an error indicating that your compiler setup does not work, or that the compilation
failed because you mistyped the program.

Coincidentally, there is an online judge problem whose output description dictates
that your program should print the text Hello world!. How convenient. This is a great
opportunity to get familiar with submitting solutions to judges.

Problem 2.3.
Hello World! hello

When you submit your solution, the judge grades it and gives you its judgment. If you
typed everything correctly, the judge tells you that the solution is Accepted. Otherwise,
you probably got Wrong Answer, meaning your program output the wrong text (and you
mistyped the code).

Now that you have solved the problem, it is time to talk about the code you typed. The
first line of code,

12

https://heap.link/ide:compile
https://heap.link/problem/hello

2.1. HELLO WORLD!

#include <iostream>

is used to include the iostream — input and output stream - file from the so-called standard
library of C++. The standard library is a large collection of ready-to-use algorithms, data
structures, and other routines which you can use when coding. For example, there are
sorting routines in the C++ standard library, meaning you do not need to implement your
own sorting algorithm when coding solutions.

Later on, we will see other useful examples of the standard library and include many
more files. The iostrean file contains routines for reading and writing data to your screen.
Your program used code from this file when it printed Hello world! upon execution.

On some platforms, there is a special include file called bits/stdc++.h. This file includes
the entire standard library. You can check if it is available on your platform by including it
using
#include <bits/stdc++.h>
in the beginning of your code. If your program still compiles, you do not need to include
anything else when using utilities from the standard library in Chapter 3.

The third line,
using namespace std;
tells the compiler that we want to use code from the standard library. If we did not add it,
we would have to specify this every time we used code from the standard library later in
our program by prefixing what we use from the library with std: : (for example std: : cout).

The fifth line defines our main function. When instructed to run our program, the
computer starts looking at this point for code to execute. The first line of the main function
is where the program starts to run, with further lines in the function executed sequentially.
Later on we learn how to define and use additional functions as a way of structuring our
code. Note that the code in a function - its body — must be enclosed by curly brackets.
Without them, we wouldn’t know which lines belonged to the function.

On line 6, we wrote a comment:

// Print Hello World!

Comments are explanatory lines not executed by the computer. Their purpose is to explain
what the code around them do and why. They start with two slashes // and continue until
the end of the current line.

It is not until the seventh line that things start happening in the program. We use the
standard library utility cout to print text to the screen. This is done by writing for example:

cout << "this is text you want to print. ";

cout << "you can " << "also print " << "multiple things. ";

cout << "to print a new line" << endl << "you print endl" << endl;
cout << "without any quotes" << endl;

Lines that do things in C++ are called statements. Note the semi colon at the end of
the line! Semi colons are used to specify the end of a statement. They are mandatory.

13

o 0N AV R W N =

CHAPTER 2. PROGRAMMING IN C++

Exercise 2.4. Must the main function be named main? Try changing the name to something
else and running your program.

Exercise 2.5. Play around with cout a bit, printing various things. For example, you can
print a pretty haiku.

2.2 Variables and Types

When solving mathematical problems, it’s often useful to introduce all kinds of names for
known and unknown values. Math problems may be about school classes of N students,
trains with a velocity v;r4i, km/h, and candy prices of p .4y $/kg. In mathematics, they
are known as variables.

This concept naturally translates into C++ but with a twist. In most programming
languages, we first need to say what type a variable has. We do not bother with this in
mathematics. There, we just write “let x = 5”. In C++, we need to be a bit more verbose and
write that “I want to introduce a variable x now. It is going to be an integer that initially
has the value 5”. Once we have decided what kind of value x will be (in this case integer) it
will always be an integer. We cannot go ahead and say “oh, I've changed my mind. x = 2.5
now!” since 2.5 is of the wrong type (a decimal number rather than an integer).

Snippet 2.2: Variables

#include <iostream>
using namespace std;

int main() {
int five = 5;
cout << five << endl;
int seven = 7;
cout << seven << endl;
five = seven + 2; // =7 +2 =9
cout << five << endl;
seven = 0;
cout << five << endl; // five is still 9
cout << 5 << endl; // we print the integer 5 directly

Another major difference is that variables in C++ are not tied to a single value during
their entire lifespans. Instead, we are able to modify the value that a variable has using
what is called assignment. Some languages do not permit this, preferring their variables
to be immutable.

In Snippet 2.2 we demonstrate how variables are used in C++. Type this program into
your editor and run it. What is the output? What did you expect the output to be?

The first time we use a variable in C++ we must decide what kind of values it may
contain. This is called declaring the variable of a certain type. For example the statement

int five = 5;

14

2.2. VARIABLES AND TYPES

declares an integer variable five and assigns the value 5 to it. The int part is C++ for
integer and is what we call a type. After the type, we write the name of the variable - in
this case five. Finally, we may assign a value to the variable. Note that further use of the
variable never includes the int part. We declare the type of a variable once and only once.

Later on in Snippet 2.2 we decide that 5 is a somewhat small value for a variable called
five. We can change the value of a variable by using the assignment operator - the equality
sign =. The assignment

five = seven + 2;

states that from now on the variable five should take the value given by the expression
seven + 2. Since (at least for the moment) seven has the value 7 the expression evaluates
to 7 +2 = 9. Thus five will actually be 9, explaining the output we get from line 12.

On line 14 we change the value of the variable seven. Note that line 15 still prints
the value of five as 9. Some people find this model of assignment confusing. We first
performed the assignment five = seven + 2;, but the value of five did not change with
the value of seven. This is mostly an unfortunate consequence of the choice of = as operator
for assignment. One could think that “once an equality, always an equality” - that the
value of five should always be the same as the value of seven + 2. This is not the case.
An assignment copies into the variable on the left hand side whatever the value of the
expression on the right hand side at a particular moment in time, nothing more.

The snippet also demonstrates how to print the value of a variable on the screen — we
cout it the same way as with text. This also clarifies why text needs to be enquoted. Without
quotes, the compiler can’t distinguish between the text string "hi " and the variable hi.

Note that it is possible to declare a variable without assigning a value to it. When
this is done, the variable may receive an arbitrary value instead. This is useful when you
immediately assign a value input by the user to a variable (see the next Section 2.3).

Exercise 2.6. What values will the variables a, b, and ¢ have after executing the following
code:

int

l

Nn TwW T N T
|
N

Here, the operator - denotes subtraction and = represents multiplication. Once you have
arrived at an answer, type this code into the main function of a new program and print
the values of the variables. Did you get it right?

Exercise 2.7. What happens when an integer is divided by another integer? Try printing

the result of the following divisions: 2, 2, 2, 2, =7, and 5.

15

N =T e N " S

CHAPTER 2. PROGRAMMING IN C++

Exercise 2.8. C++ allows declarations of immutable (constant) variables, using the keyword
const. For example

const int FIVE = 5;

What happens if you try to perform an assignment to such a variable?

There are many other types than int. We have seen one (although without its correct
name), the type for text. You can see some of the most common types in Snippet 2.3.

Snippet 2.3: Types

string text = "Johan said: \"heya!\" ";
cout << text << endl;

char letter = '@';
cout << letter << endl;

int number = 7;
cout << number << endl;

long long largeNumber = 8888388888888;
cout << largeNumber << endl;

double decimalNumber = 513.23;
cout << decimalNumber << endl;

bool thisisfalse = false;
bool thisistrue = true;
cout << thisistrue << " and " << thisisfalse << endl;

The text data type is called string. Values of this type must be enclosed with double
quotes. To include double quotation marks in strings, they must be escaped using a
backslash: "a \"quote\" in a string"

There exists a data type containing one single letter, the char. Such a value is surrounded
by single quotes. The char value containing the single quotation mark is written "\ ',
similarly to how we included double quotes in strings.

Then comes the int, which we discussed earlier. The long long type contains integers

just like the int type. They differ in how large integers they can contain. An int can only
contain integers between —23' and 23! — 1 while a long 1ong extends this range to —2%° to
29 -1,
Exercise 2.9. Since backslashes are used to escape quotes inside a string, we can not include
backslashes in a string like any other character. Find out how to include a literal backslash
in a string (for example by searching the web or thinking about how we included the
different quotation mark).

Exercise 2.10. Write a program that assigns the minimum and maximum values of an
int to am int variable x. What happens if you increment or decrement this value using
x = x + 1; Or x = x - 1; respectively and print its new value?

16

2.2. VARIABLES AND TYPES

Competitive Tip

One of the most common sources for errors in code is trying to store an integer value outside
the range of the type. Always make sure your values fit inside the range of an int if you use it.
Otherwise, use long longs!

One of the reasons for not always using long long all the time is that some operations
involving long longs can be slower using ints under certain conditions. The cost of representing
many more integers it that long longs take twice the amount of memory that ints do.

Next comes the double type. This type represents decimal numbers. The decimal
sign in C++ is a dot, not a comma. There is also another similar type called the float.
The difference between these types are similar to that of the int and long 1long. A double
can represent “more” decimal numbers than a fleat. This may sound weird considering
that there is an infinite number of decimal numbers even between 0 and 1. However, a
computer can clearly not represent every decimal number — not even all those between
0 and 1. Distinguishing between an infinite number of decimal numbers would require
infinite memory. Instead, they represent a limited set of numbers — with about 15 significant
digits, and about 308 zeroes to the left or right of those digits. Floats have fewer significant
digits, and can only represent smaller numbers (they are seldom used in competitive
programming).

The last of our common types is the bool (short for boolean). This type can only contain
one of two values - it is either true or false. While this may look useless at a first glance,
the importance of the boolean becomes apparent later.

Exercise 2.11. In the same way that integer types have a valid range of values, a double
cannot represent arbitrarily large values. Find out what the minimum and maximum
values of a double are.

C++ has a construct called the typedef, short for type definition. It enables us to give
types new names. Since typing long leng for every large integer variable is very annoying,
we could use a type definition to alias it with the much shorter 11 instead. Such a typedef
statement looks like this:

typedef long long 11;
On every line after this statement, we can use 11 just as if it were a long long:

11 largeNumber = 888888888888;

Sometimes we use types with very long names but do not want to shorten them using
type definitions. This could be the case when we use many different such types and
typedefing them would take unnecessarily long time. We then resort to using the auto
“type” instead. If a variable is declared as auto and assigned a value at the same time its
type is inferred from that of the value. This means we could write

17

© N AW AW N e

[—
& B E o

CHAPTER 2. PROGRAMMING IN C++

auto val = 123;

instead of

int val = 123;

2.3 Input and Output

In the previous sections we occasionally printed things onto our screen. To spice our code
up a bit we are now going to learn how to do the reverse - reading values that we type on
our keyboards into a running program! When we run a program we may type things in
the command terminal that appears. Pressing the Enter key allows the program to read
what we have written so far.

Reading input data is done just as you would expect, almost entirely symmetric to
printing output. Instead of cout we use cin, and instead of << variable we use >> variable,
ie.

cin >> variable;

Type in the program from Snippet 2.4 to see how it works.

Snippet 2.4: Input

#include <iostream>
using namespace std;

int main() {
string name;
cout << "What's your first name?" << endl;
cin >> name;
int age;
cout << "How old are you?" << endl;
cin >> age;
cout << "Hi,
cout << "You are

<< name << "I" << endl;
" << age << " years old." << endl;

Exercise 2.12. What happens if you enter an invalid input, such as your first name instead
of your age?

Exercise 2.13. What happens if you enter two words when asked for your first name?

We revisit more advanced input and output concepts in Section 3.5 about the standard
library. For example, we learn how to read entire lines of text and not only single words.

Problem 2.14.
Odd Echo oddecho (subtask 1)

18

https://heap.link/problem/oddecho

O 0N A AW N =

[-
& B B o

2.4. OPERATORS

2.4 Operators

Earlier we saw examples of so-called operators, such as the assignment operator =, and the
arithmetic operators + - » /, which stand for addition, subtraction, multiplication and
division. They work almost like they do in mathematics, and allow us to write code such
as the one in Snippet 2.5.

Snippet 2.5: Operators

#include <iostream>
using namespace std;

int main() {

int a = o;

int b = o;

cin >> a >> b;

cout << "Sum: " << (a + b) << endl;

cout << "Difference: " << (a - b) << endl;
cout << "Product: " << (a * b) << endl;
cout << "Quotient: " << (a / b) << endl;
cout << "Remainder: " << (a % b) << endl;

Exercise 2.15. Type in Snippet 2.5 and test it on a few different values. Most importantly,
test:

e b=0,
« negative values for a and/or b, and

« values where the expected result is outside the valid range of an int.

As you probably noticed in the exercise, the division operator of C++ performs so-
called integer division. This means the answer is rounded to an integer (towards o). Hence
7 / 3 = 2, with remainder1,and -7 / 3 = -2.

Exercise 2.16. If division rounds down towards zero, how do you compute f rounded to
an integer away from zero?

The snippet also introduces the modulo operator, %. It computes the remainder of
the first operand when divided by the second. As an example, 7 % 3 = 1. Different pro-
gramming languages have different behaviors regarding modulo operations on negative
integers. In C+C++ the value of a modulo operation can be negative when including
negative operands.

In case we want the result of a division to be a decimal number one of the operands
must be a double (Snippet 2.6).

19

N OV AW N =

o 0N AN R W N e

[=
& 8 B o

CHAPTER 2. PROGRAMMING IN C++

Snippet 2.6: Division Operators

int a = 6;
int b = 4;
cout << (a / b) << endl;

double aa = 6.0;
double bb = 4.0;
cout << (aa / bb) << endl;

Some common operations have additional shorthand operators. Check out Snippet 2.7
for some examples. Each arithmetic operator has a corresponding combined assignment
operator. Such an operator, e.g. a += 5; is equivalent to a = a + 5;. They act as if the
variable on the left hand side is also the left hand side of the corresponding arithmetic
operator and assign the result of this computation to said variable. Hence, the above
statement increases the variable a with 5.

Snippet 2.7: Shorthand Operators

int num = o;

num += 1;

cout << num << endl;
num *= 2;

cout << num << endl;
num -= 3;

cout << num << endl;
cout << num++ << endl;
cout << num << endl;
cout << ++num << endl;
cout << num << endl;
cout << num-- << endl;
cout << num << endl;

Addition and subtraction with 1 are fairly common operations. So common, in fact,
that shorthand operators were introduced for the purpose of saving an entire character
compared to the highly verbose +=1 operator. These operators consist of two plus signs or
two minus signs. For instance, a++ increments the variable by 1.

These expressions also evaluate to a value. What value this is depends on whether we
put the operator before or after the variable name. By putting ++ before the variable, the
value of the expression is the incremented value. If we put it afterwards we get the original
value. To get a better understanding of how this works it is best if you type the code in
Snippet 2.7 in yourself and analyze the results.

We end the discussion on operators by saying something about operator precedence, i.e.
the order in which operators are evaluated in expressions. In mathematics, there is a well-
defined precedence: brackets go first, then exponents, followed by division, multiplication,
addition, and subtraction. Furthermore, most operations (exponents being a notable
exception) have left-to-right associativity so that 5 — 3 — 1 equals ((5 - 3) —1) = 1 rather

20

[NV R O O

2.5. IF STATEMENTS

than (5 - (3 -1)) = 3. In C++, there are a lot of operators, and knowing precedence rules
can easily save you from bugs in your future code.

Exercise 2.17. Research online C++ documentation on operator precedence to determine
what the expression

2% 4 -7%2%4/2
evaluates to in C++. Run it as a program to see if you got it correct.

Problem 2.18.

Two-sum twosum
Triangle Area triarea
Bijele bijele
Digit Swap digitswap
R2 r2

2.5 If Statements

In addition to assignment and arithmetic, there are a large number of comparison opera-
tors. They compare two values and evaluate to a bool value depending on the result of the
comparison.

Snippet 2.8: Comparison Operators

// check if a equals b

// check if a and b are different

b // check if a is greater than b

b // check if a is less than b

<= b // check if a is less than or equal to b

>= b // check if a is greater than or equal to b

== b
= b

VR <V <R « VR « VI o V]

A bool can also be negated using the ! operator. So the expression ! false (which we
read as “not false”) has the value true and vice versa ! true evaluates to false. The operator
works on any boolean expressions, so that if b would be a boolean variable with the value
true, then the expression !b evaluates to fatse.

There are two more important boolean operators. The and operator s& takes two
boolean values and evaluates to true if and only if both values are true. Similarly, the or
operator || evaluates to true if and only if at least one of its operands are true.

Exercise 2.19. Write a program that reads two integers as input, and prints the result of
the different comparison operators from Snippet 2.8, e.g

cout << (a == b) << endl;

Note the parenthesis used due to operator precedence!

21

https://heap.link/problem/twosum
https://heap.link/problem/triarea
https://heap.link/problem/bijele
https://heap.link/problem/digitswap
https://heap.link/problem/r2

[RN - N N T

N R W N =

CHAPTER 2. PROGRAMMING IN C++

A major use of boolean variables is in conjunction with if statements (also called
conditional statements). They come from the necessity of executing certain lines of code
if (and only if) some condition is true. Let us write a program that takes an integer as
input, and tells us whether it is odd or even. We can do this by computing the remainder
of the input when divided by 2 (using the modulo operator) and checking if it is 0 (even
number), 1 (positive odd number) or, —1 (negative odd number). An implementation of
this can be seen in Snippet 2.9.

Snippet 2.9: 0dd or Even

int input;

cin >> input;

if (input % 2 == 0) {
cout << input <<

"

is even!" << endl;

}

if (input % 2 == 1 || input % 2 == -1) {
cout << input << " is odd!" << endl;

}

An if statement consists of two parts — a condition, given inside brackets after the if
keyword, followed by a body - some lines of code surrounded by curly brackets. The code
inside the body will be executed in case the condition evaluates to true.

Our odd or even example contains a certain redundancy. If a number is not even we
know it is odd. Checking this explicitly using the modulo operator is a bit unnecessary.
Indeed, there is a construct that saves us from this verbosity - the else statement. It is
used after an if statement and contains code that should be run if the condition given to
the condition of an if statement is false. We can adopt this to simplify our odd and even
program to the one in Snippet 2.10.

Snippet 2.10: 0dd or Even 2

int input;
cin >> input;
if (input % 2 == o) {
cout << input << " is even!" << endl;
} else {
cout << input << " is odd!" << endl;

}

There is one last if-related construct - the else if. Since code is worth a thousand words,
we demonstrate how it works in Snippet 2.11 by implementing a helper for the children’s
game FizzBuzz. In FizzBuzz, one goes through the natural numbers in increasing order
and say them out loud. When the number is divisible by 3 you instead say Fizz. If it is
divisible by 5 you say Buzz, and if it is divisible by both you say FizzBuzz.

22

O 0N AW AW N =

-
—
- O

R T S

2.6. For Loors

Snippet 2.11: Else If

int input;

cin >> input;

if (input % 15 == 0) {
cout << "FizzBuzz" << endl;

} else if (input % 5 == 0) {
cout << "Buzz" << endl;

} else if (input % 3 == 0) {
cout << "Fizz" << endl;

} else {
cout << input << endl;

}

Exercise 2.20. Run the program in Snippet 2.11 with the values 30, 10, 6, 4. Explain the
output you get.

Problem 2.21.

Sort Two Numbers sorttwonumbers
Expected Earnings expectedearnings
Quadrant Selection quadrant
Grading grading
Spavanac spavanac
Cetvrta cetvrta

2.6 For Loops

Another rudimentary building block of programs is the for loop. A for loop is used to
execute a block of code multiple times. The most basic loop repeats code a fixed number
of times as in Snippet 2.12.

Snippet 2.12: For Loops

int repetitions = o;
cin >> repetitions;
for (int i = 0; i < repetitions; i++) {
cout << "This is repetition " << i << endl;

}

A for loop consists of four parts. The first three parts are the semi-colon separated
statements immediately after the for keyword. In the first of them, you write some
statement, such as a variable declaration. In the second part, you write an expression that
evaluates to a boot, such as a comparison between two values. In the third part you write
another statement.

The first statement is executed only once - it is the first thing that happens in a loop.
In this case, we declare a new variable i and set it to 0. The loop will then be repeated until
the condition in the second part is false. Our example loop will repeat until i is no longer

23

https://heap.link/problem/sorttwonumbers
https://heap.link/problem/expectedearnings
https://heap.link/problem/quadrant
https://heap.link/problem/grading
https://heap.link/problem/spavanac
https://heap.link/problem/cetvrta

O 0N A AW N =

R o

CHAPTER 2. PROGRAMMING IN C++

less than repetitions. The third part executes after each execution of the loop. Since we
use the varijable i to count how many times the loop has executed, we want to increment
this by 1 after each repetition.

Together, these three parts make sure our loop will run exactly repetitions times. The
final part of the loop is the statements within curly brackets. Just as with the if statements,
this is called the body of the loop. It contains the code that to be executed in each repetition.
A repetition of a loop is in algorithm language referred to as an iteration.

Exercise 2.22. What happens if you enter a negative value as the number of loop repetitions?
Exercise 2.23. Design a loop that instead counts backwards, from repetitions —1to 0.

Problem 2.24.

N-Sum nsum

Building Pyramids pyramids (both subtasks)
Odd Echo oddecho (both subtasks)
Cinema Crowds cinema

Refrigerator Transport refrigerator (both subtasks)

Within a loop, two useful keywords can be used to modify the loop - continue and
break. Using continue; inside a loop exits the current iteration and starts the next one.
break; on the other hand, exits the loop altogether. For an example, consider Snippet 2.13.

Snippet 2.13: Break and Continue

int check = 35;

for (int divisor = 2; divisor * divisor <= check; ++divisor) {
if (check % divisor == 0) {
cout << check << " is not prime!" << endl;
cout << "It equals " << divisor << " x "
<< (check / divisor) << endl;
break;
}
}

for (int divisor = 1; divisor <= check; ++divisor) {
if (check % divisor == 0) {
continue;

}

cout << divisor << " does not divide " << check << endl;

}

Exercise 2.25. What will the following code snippet output?
for (int i = o; false; i++) {

cout << i << endl;

}

for (int i = 0; i >= -10; --i) {

24

https://heap.link/problem/nsum
https://heap.link/problem/pyramids
https://heap.link/problem/oddecho
https://heap.link/problem/cinema
https://heap.link/problem/refrigerator

1
2
3
4
5
6
7
8
9

2.7. WHILE Looprs

cout << i << endl;

}

for (int i = 0; 1 <= 10; ++i) {
if (i % 2 == 0) continue;
if (i == 8) break;
cout << i << endl;

}

Problem 2.26.

Cinema Crowds 2 cinemaz
Lamps lamps (both subtasks)

2.7 While Loops

There is a second kind of loop, which is simpler than the for loop. It is called a while
loop, and works like a for loop where the initial statement and the update statement are
removed, leaving only the condition and the body. It can be used when you want to loop
over something until a certain condition is false (Snippet 2.14).

Snippet 2.14: While

int num = 9;
while (num !'= 1) {
if (num % 2 == 0) {
num /= 2;
} else {
num = 3 * num + 1;
}
cout << num << endl;

}

The break; and continue; statements work the same way as the do in a for loop.

Problem 2.27.

3D Printed Statues 3dprinter
Hailstone Sequences hailstone2
Soda Slurper sodaslurper

2.8 Functions

In mathematics, a function is something that takes one or more arguments and computes
some value based on them. Common functions include the squaring function square(x) =
x%, the addition function add(x, y) = x + y or, the minimum function min(a, b) which
evaluates to the smallest of its arguments.

Functions exists in programming as well but work slightly differently. Indeed, we
have already seen a function — the main() function. We have implemented the example
functions in Snippet 2.15.

25

https://heap.link/problem/cinema2
https://heap.link/problem/lamps
https://heap.link/problem/3dprinter
https://heap.link/problem/hailstone2
https://heap.link/problem/sodaslurper

O 0NN AW AW N =

-
-
- O

12

CHAPTER 2. PROGRAMMING IN C++

Snippet 2.15; Functions

#include <iostream>
using namespace std;

int square(int x) {
return x * Xx;

}

int min(int x, int y) {
if (x <vy) {
return Xx;
} else {
return y;
}
}

int add(int x, int y) {
return x + vy,

}

int main() {
int x, vy;
cin >> x >> y;
cout << x << ""2 = << square(x) << endl;
cout << x << " + " <<y << " = " << add(x, y) << endl;
cout << "min(" << x << ", " <<y << ") = " << min(x, y) << endl;

"

In the same way that a variable declaration starts by declaring what data type a variable
contains, a function declaration states what data type the function evaluates to. Afterwards,
we write the name of the function followed by its arguments, written as a comma-separated
list of variable declarations. Finally, we give it a body of code wrapped in curly brackets.

All of these functions contain a statement with the return keyword, unlike our main
function. A return statement says “stop executing this function, and return the following
value”. Thus, when we call the squaring function by square(x), the function will compute
the value x » x and make sure that square(x) evaluates to just that.

Why have we left a return statement out of the main function? In main(), the compiler
inserts an implicit return o; statement at the end of the function.

Exercise 2.28. What does the following function call evaluate to?
min(square(10), add(square(9), 23));
Exercise 2.29. We declared all of the new arithmetic functions above our main function in

the example. Why did we do this? What happens if you move one below the main function
instead?

Exercise 2.30. Research online what a forward declaration of a function is, and how it
resolves the problem from Exercise 2.29.

26

O 00N AW AW N =

o 0N NN R W N e

2.8. FUuNcTIONS

Problem 2.31.
Arithmetic Functions arithmeticfunctions

An important caveat when calling functions is that the arguments we send along are
copied. If we try to change them by assigning values to our arguments, we will not change
the original varijables in the calling function (see Snippet 2.16 for an example).

Snippet 2.16: Argument Copying

void change(int val) {
val = 0;

}

int main() {
int variable = 100;
change(variable);
cout << "Variable is

}

"

<< variable << endl;

We can choose not to return anything with the void return type. This may seem useless
since nothing ought to happen if we call a function but does not get anything in return.
However, there are ways we can affect the program without returning.

The first one is by using global variables. They are variables declared outside of a
function, available to every function in your program. Changes to a global variable by one
function are also seen by other functions (try out Snippet 2.17 to see them in action).

Snippet 2.47: Global Variables

int currentMoney = 0;

void deposit(int newMoney) {
currentMoney += newMoney;

}

void withdraw(int withdrawal) {
currentMoney -= withdrawal;

}

int main() {
cout << "Currently, you have

" "

<< currentMoney << money" << endl;

deposit(1000);

withdraw(2000);

cout << "Oh-oh! Your balance is " << currentMoney << " :(" << endl;
}
Problem 2.32.
Counting Days countingdays

Secondly, we can change the variables passed to a function as arguments by declaring
them as references. Such an argument is written by adding a & before the variable name,
for example int sx. If we perform assignments to the variable x within the function we

27

https://heap.link/problem/arithmeticfunctions
https://heap.link/problem/countingdays

O N AWV AW N

-
=
-~ O

CHAPTER 2. PROGRAMMING IN C++

change the variable used for this argument in the calling function instead. Snippet 2.18
contains an example of using references.

Snippet 2.48: References

// Note &val instead of val
void change(int &val) {
val = o;

}

int main() {
int variable = 100;
cout << "Variable is " << variable << endl;

change(variable);

cout << "Variable is " << variable << endl;
}
Problem 2.33.
Logic Functions logicfunctions

Exercise 2.34. Why is the function call change(4) not valid C++?

2.9 Structures

Algorithms operate on data, usually lots of it. Programming language designers therefore
came up with many ways of organizing the data that programs use. One of these constructs
is the structure (also called a record, and in C++ almost equivalent to something called a
class). Structures are a special kind of data type that can contain variables (then called
a member variable) inside the structure, and member functions which can operate on
member variables.

The basic syntax used to define a structure looks like this:
struct Point {

double x;

double y;

b

This structure contains two member variables, x and y, representing the coordinates
of a point in the Euclidean plane.

Once a structure is defined we can create instances of it. Every instance has its own
copy of the member variables of the structure. Structures essentially encapsulate concepts,
like what a “book” is, while instances of the structure represent individual, particular
books (like this one!).

To create an instance of a struct, use the same syntax as with other variables. We can
get the value of a member variable of a structure using the syntax instance.variable.

28

https://heap.link/problem/logicfunctions

(=R Y N

[N N N S

2.9. STRUCTURES

Snippet 2.19: Using structures

Point origin; // create an instance of the Point structure

// set the coordinates to (o, o)
origin.x = 0o;
origin.y = o;

cout << "The origin is (" << origin.x <<
<< origin.y << ")." << endl;

" "
’

As you can see structures allow us to group certain kinds of data together in a logical
fashion. Later on, this will simplify the coding of certain algorithms and data structures
immensely.

There is an alternate way of constructing instances called constructors. A constructor
looks like a function inside our structure and allows us to pass arguments when we create
a new instance of a struct. The constructor can use these arguments to help set up the
instance.

Snippet 2.20: Constructors

struct Point {
// ... everything previously defined

Point(double theX, double theY) {
x = theX;
y = theY;
}
b

The newly added constructor lets us pass two arguments when constructing the instance to
set the coordinates correctly. With it, we avoid the two extra statements to set the member
variables.

Point p(4, 2.1);

cout << "The point is (" << p.x << << p.y << ")." << endl;

Structure values can also be constructed outside of a variable declaration using the syntax
Point(1, 2);

so that we can reassign a previously declared variable with

p = Point(1, 2);

We can also define functions inside the structure. These functions work just like any
other except they can also access the member variables of the instance that the member
function is called on. For example, we might want a convenient way to mirror a certain
point in the X-axis, scale a certain point with an integer coefficient or print the coordinates
of the point. This could be accomplished by adding member functions.

29

CHAPTER 2. PROGRAMMING IN C++

Snippet 2.21: Member functions

struct Point {
// ... everything previously defined

// This creates a new, mirrored point.
Point mirror() {
return Point(x, -y);

}

// This changes the point itself.
void scale(int scale) {

X = X * scale;

y =y * scale;

}

// No changes and returns nothing.
void print() {
cout << "(" << x << "," <<y << ")" << endl;
}
b

To call member functions, we type its name and provide the list with arguments, for
example:
Point p(1, 2);
p.print();
Point mirrored = p.mirror();
mirrored.print();
// mirror() returns a new point, so p is unchanged
p.print();
p.scale(4);
// scale() changes the member variables, so p is changed
p.print();
In this example we see yet another use of a void function. Such member functions can
still modify the member variables of the struct the belong to.

Exercise 2.35. Add a translate member function to the point structure. It should take
two double values x and y as arguments and return a new point that is the instance point
translated by (x, y).

Similarly to how the const modifier could be added to a variable declaration, a member
function can also be declared to be const:

Point mirror() const {

return Point(x, -y);
}
The keyword must be added right before the last brace. Such a function is unable to modify
any of the member variables. It can not call other member functions that are not declared
as const either. There is one context where you need to worry about const, namely when
using your own structures with the C++ standard library in certain ways.

30

R =T L Y T S T N

-
=
-~ O

2.10. ARRAYS

Exercise 2.36. What happens if we try to change a member variable in a const member
function?

Finally, C++ has a powerful mechanism called operator overloading. It allows us to
define how various operators such as + should behave if we apply them to instances of a
struct. For example, we could define what happens when we write a + b where a and b are
Points. The syntax for the binary operators looks like this:

Snippet 2.22: Operator Overloading

Point operator+(Point other) {
double newX = x + other.x;
double newY = y + other.y;
return Point(newX, newY);

Try this function out by defining two points and computing their sum.

Exercise 2.37. One can use operator overloading for binary operators where the types are
different as well. For example,

Point operatorx(double m) { ... }

would define what happens if you multiply a point by a double. Add such a function to
your point, that returns a point with its coordinates scaled by the given double.

Exercise 2.38. Fill in the remaining code to implement this structure:

struct Quotient {
// .. member variables?
// Construct a new Quotient with the given numerator and denominator
Quotient(int n, int d) { }
// Return a new Quotient, this instance plus the "other" instance
Quotient add(const Quotient Sother) const { }
// Return a new Quotient, this instance times the "other" instance
Quotient multiply(const Quotient &other) const { }
// Output the value on the screen in the format n/d
void print() const { }

b

2.10 Arrays

In the sorting problem from Chapter 1 we often spoke of the data type “sequence of
integers”. Until now, none of the data types we have seen in C++ represents this kind of
data. We present the array. It is a special type of variable capable of storing a large number
of variables of the same type. For example, it could be used to represent the recurring data
type “sequence of integers” from the sorting problem in Chapter 1. To declare an array, we
specify the type of variable it should contain, its name, and its size using the syntax:

type name[sizel;

For example, an integer array of size 10 named seq would be declared with

31

R =T R L Y T S P N

CHAPTER 2. PROGRAMMING IN C++

int seq[10];

This creates 10 integer “variables” which we can refer to using the syntax seq[index],
starting from zero (they are zero-indexed). Thus we can use seq[e], seq[1], etc., all the
way up to seq[9]. The values are called the elements of the array.

size = 10

seq[0] | seq[1] | seq[2] | seq[3] | seq[4] | seq[5] | seq[6] | seq[7] | seq[8] | seq[9]

Figure 2.1: A 10-element array called seq.

Be aware that using an index outside the valid range for a particular array (i.e. below
0 or above the size — 1) can cause erratic behavior in the program without crashing it.

If you declare a global array all elements get a default value. For numeric types this is
0, for booleans this is false, for strings this is the empty string and so on. If, on the other
hand, the array is declared in the body of a function that guarantee does not apply. Instead
of being zero-initialized, the elements can have random values. For this reason, arrays are
mostly declared globally in competitive programming.

You can see an example of arrays in action in Snippet 2.23, which computes a few of
the the possible scores of a roll in the dice game Yahtzee.

Snippet 2.23: Arrays

#include <iostream>
using namespace std;

int rolls[71;

int main() {

cout << "Enter 5 dice rolls between 1 and 6: " << endl;
for (int i = 0; i < 5; i++) {
int roll;
cin >> roll;
rolls[roll]++;
}
cout << "Yatzee scores: " << endl;
for (int i = 1; 1 <= 6; i++) {
cout << 1 << "'s: " << (i * rolls[i]) << endl;
}

Later on (Section 3.1.2) we transition from using arrays to a much more powerful
structure from the standard library that serves the same purpose - the vector.

32

O 0N A AW N =

-
o

2.11. LAMBDAS

Problem 2.39.

Reverse ofugsnuid
Modulo modulo
Booking a Room bookingaroom

2.11 Lambdas

We now briefly discuss a somewhat complex language construct — lambdas. They are
seldom strictly necessary to solve problems, but make working with the standard library a
bit simpler at times. They are also good to know of when reading C++ code others wrote.

A lambda expression is essentially an unnamed function that can be defined within
another function and assigned to a variable of the function type:

Snippet 2.24: Lambda Functions

#include <iostream>
#include <functional>
using namespace std;

int main() {
function<int(int, int)> op = [](int a, int b) -> int {
return a * b + a + b;
b

cout << op(5, op(1, 2)) << endl;

Here, we have defined a function that takes two values a and b and returns the value
a + b+ a + b Wehave assigned the function to the variable op. It can be invoked as if it
was a regular function with that name.

Generally, definitions look simpler than this. If the compiler can figure out what type
all the return values have, we can ignore the -> int part, which is otherwise used to specify
the type of the lambda’s return value. We also tend to use the auto type instead of the
more convoluted function<...> type, as long as the lambda does not call itself through
the name of the variable to which it is assigned.

Thus, the declaration may also look like this:
auto op = [](int a, int b) {

return a * b + a + b;

b

What is the point of doing this rather than simply using regular functions? Lambdas
can also be given access to variables of the enclosing function:
int x = 5;
auto addToX = [&](int y) {

X +=y;

b
Here, note the added ampersand in [&]. This means that all variables defined before the
lambda in the function should be accessible within the lambda as references.

33

https://heap.link/problem/ofugsnuid
https://heap.link/problem/modulo
https://heap.link/problem/bookingaroom

CHAPTER 2. PROGRAMMING IN C++

Exercise 2.40. Use the internet to figure out:

« how to only make a single variable from the enclosing function available in a lambda,

 how to make variables within the enclosing function available as copies rather than
as references, and

» how lambdas can be passed as arguments to other functions.

2.12 The Preprocessor

C++ has a powerful tool called the preprocessor. This utility is able to read and modify
your code using certain rules during compilation. The commonly used #include is a
preprocessor directive that includes a certain file in your code.

Besides file inclusion, we mostly use the #define directive. It allows us to replace
certain tokens in our code with other ones. The most basic usage is

#define TOREPLACE REPLACEWITH

which replaces the token TOREPLACE in our program with RepLACEWITH. The true power
of the define comes when using define directives with parameters. These look similar
to functions and allows us to replace certain expressions with another one, additionally
inserting certain values into it. We call these macros. For example the macro

#define rep(i,a,b) for (int i = a; i < b; 1i++)
means that the expression

rep(i,o,5) {
cout << i << endl;

}
is expanded to

for (int i = 0; 1 < 5; ++i) {
cout << i << endl;

}

You can probably get by without ever using macros in your code. The reason we discuss
them is similar to that of lambda’s: they are used widely in competitive programming, so
it is good to at least be familiar with what they do.

ADDITIONAL EXERCISES

Problem 2.41.

Solving for Carrots carrots
Paul Eigon pauleigon
Stuck In A Time Loop timeloop
Sibice sibice
Cold-puter Science cold
Tarifa tarifa

34

https://heap.link/problem/carrots
https://heap.link/problem/pauleigon
https://heap.link/problem/timeloop
https://heap.link/problem/sibice
https://heap.link/problem/cold
https://heap.link/problem/tarifa

2.12. THE PREPROCESSOR

Patuljci patuljci

Left Beehind leftbeehind
No Duplicates nodup

I've Been Everywhere, Man everywhere
Right-of-Way vajningsplikt
NoOTES

C++ was invented by Danish computer scientist Bjarne Stroustrup. Bjarne has also pub-
lished a book on the language, The C++ Programming Language [51], that contains a more
in-depth treatment of the language. It is rather accessible to C++ beginners but is better
read by someone who have some prior programming experience (in any programming
language).

C++is standardized by the International Organization for Standardization (ISO). These
standards are the authoritative source on what C++ is. The final drafts of the standards
can be downloaded at the homepage of the Standard C++ Foundation'.

There are many online references of the language and its standard library. The two we
use most are:

e heap.link/cpp:cppreference

e heap.link/cpp:cplusplus

*heap.link/cpp:iso

35

https://heap.link/problem/patuljci
https://heap.link/problem/leftbeehind
https://heap.link/problem/nodup
https://heap.link/problem/everywhere
https://heap.link/problem/vajningsplikt
https://heap.link/cpp:cppreference
https://heap.link/cpp:cplusplus
https://heap.link/cpp:iso

CHAPTER 2. PROGRAMMING IN C++

36

CHAPTER 3

The C++ Standard Library

In this chapter we study parts of the C++ standard library - that is, data structures,
algorithms and utilities that are already provided for us without having to code them
ourselves.

We start by examining a number of basic data structures. Data structures help us
organize the data we work with in the hope of making processing both easier and more
efficient. Different data structures serve widely different purposes and solve different
problems. Whether a data structure fits our needs depends on what operations we wish
to perform on the data. We consider neither the efficiency of the various operations nor
how they are implemented in this chapter. These concerns are postponed until Chapter 6,
when we have the tools to analyze the efficiency of data structures.

The standard library also contains many useful algorithms such as sorting and various
mathematical functions. These are discussed after the data structures.

In the end, we take a deeper look at string handling in C++ and some more input/output
routines.

3.1 Data Structures

Aside from input and output, the most important part of the standard library is its many
containers. They range from the very simple to structures highly difficult to understand
and implement efficiently if we were to do so ourselves. A majority of the problems
you solve requires use of common data structures, so it is important that you are well
acquainted with them.

Pairs

As a small taste of what is to come, we start by looking at the pair. It is the simplest of the
data structures, containing a pair of two values of any types. A pair containing variables
of types A and B is declared by

pair<A, B> name;
This angled bracket syntax to specify the type of value stored in a container appears for every

data structure from the standard library. To use pairs, you must include #include<utility>.
It also has a constructor that takes to values and stores them in the pair directly:

pair<string, int> bovine("cow", 4);

37

CHAPTER 3. THE C++ STANDARD LIBRARY

The two variables in a pair are stored in the member variables first and second, so they
can be updated and retrieved easily:

pair<int, int> p(s, 4);

int sum = p.first + p.second;

p.first = 10;

There is also a function that can construct a pair for us without us having to write out
the types:

pair<string, string> dict("hello", "hejsan");
dict = make_pair("goodbye", "au revoir");
Vectors

One of the latter things discussed in the C++ chapter was the fixed-size array. As you
might remember, the array is a special kind of data type that allows us to store multiple
values of the same data type inside what appeared as a single variable. Arrays are a bit
awkward to work with in practice. When passing them as parameters we must also pass
along the size of the array. We are unable to change the size of arrays once declared nor
can we easily remove or insert elements, or copy arrays.

The dynamic array is a special type of array that can change size (hence the name
dynamic). It also supports operations such as removing and inserting elements at any
position in the list.

The C++ standard library includes a dynamic array called a vector, which is an alter-
native name for dynamic arrays in some languages. To use it you must include the vector
file by adding the line

#include <vector>

among your other includes at the top of your program.
When declaring vectors, they need to know what type of data they should store, just
like pairs. To create a vector containing strings named words we write

vector<string> words;

Once a vector is created elements can be appended to it using the push_back member
function. The following four statements would add the words

Simon is a fish

as separate elements to the vector:

words.push_back("Simon");

words.push_back("is");

words.push_back("a");

words.push_back("fish");

To refer to a specific element in a vector you can use the same operator [] as for arrays.

Thus, words[i] refers to the i’th value in the vector (starting at 0).

38

3.1. DATA STRUCTURES

non

cout << words[e] << << words[1] << " "; // Prints Simon is
cout << words[2] << " " << words[3] << " "; // Prints a fish

Like arrays, accessing indices outside the valid range of the vector can cause weird
behavior in your program.
We can get the current size of an array using the size() member function:

" "

cout << "The vector contains << words.size() << words" << endl;

There is also an empty() function that can be used to check if the vector contains no
elements. These two functions are part of almost every standard library data structure.

Problem 3.1.
Vector Functions vectorfunctions

You can also create dynamic arrays that already contain a number of elements. This is
done by passing an integer argument when first declaring the vector. They are filled with
the same default value as (global) arrays are when created:

vector<int> vec(s5); // creates a vector containing 5 zeroes
The value that an array should be filled with can be set explicitly by using a two-
argument constructor; the second argument is the value to fill the array with:

vector<int> vec(s, -1); // creates a vector containing 5 -1's
Exercise 3.2. What happens when you create vectors of a struct? Try using structures:

« without a constructor,

o with a zero argument constructor,

« with only non-zero argument constructors, and

« with both zero argument and non-zero argument constructors.

We can create vectors that contain other vectors, to make multidimensional vectors. A
2-dimensional vector (i.e. a grid of values) in the following way:

vector<vector<int>> grid(7, vector<int>(5));

Since we filled the vector with 7 vectors of length 5, we get a 7 x 5 grid of integers. The
values in the grid are then referred to by grid[al[b] where0<a <5and0< b < 7.

Similarly, one can create N-dimensional vectors by creating vectors of vectors of ...
and so on.

Problem 3.3.
Cinema Seating cinemaseating

Other occasionally useful functions supported by vectors are:

 pop_back(): remove the last element of a vector,

39

https://heap.link/problem/vectorfunctions
https://heap.link/problem/cinemaseating

CHAPTER 3. THE C++ STANDARD LIBRARY

e clear(): remove all elements of a vector,

o front(): get the first element of a vector,

back(): get the first element of a vector, and

e assign(n, val): replace the contents of the vector with n copies of vat.

Iterators

A concept central to the standard library is the iterator. An iterator is an object which
“points to” an element in some kind of data structure (such as a vector). Essentially, they
are a generalization of the role played by an integer representing an index of a vector. The
reason we could not simply eliminate them and use integer indexes wherever iterators
appear is that some data structures do not support accessing values directly by their index.
Not all data structures support iterators either.

The type of an iterator for a data structure of type t is t::iterator. An iterator of a
vector<string> thus has the type vector<string>::iterator. Most of the time we instead
use the auto type since this is very long to type.

To get an iterator to the first element of a vector, we use begin():

auto first = words.begin();

We can get the value that an iterator points at using the « operator:

cout << "The first word is " << *first << endl;

If we have an iterator it pointing at the i’th element of a vector we can get a new iterator
pointing to another value in one of two ways. For iterators of a vector, we add or subtract
an integer value to the iterator. For example, it + 4 points to the (i + 4)’th element of the
vector, and it - 1 is the iterator pointing to the (i —1)’st element.

For those structures that do not support access by indexes, the iterators can instead
by moved forwards and backwards using the ++ and -- operators, i.e. by writing it++ and
it--.

There is a special kind of iterator that points to the first position after the last element.
We get this iterator by using the function end(). It allows us to iterate through a vector in
the following way:

for (auto it = words.begin(); it != words.end(); it++) {
string value = xit;
cout << value << endl;

}
In this loop we start by creating an iterator which points to the first element of the vector.
The update statement repeatedly moves the iterator to the next element in the vector. The
loop condition ensures that the loop breaks when the iterator first points to the element
past the end of the vector.
In modern C++ language versions, there is a shorter construct that is equivalent to
this loop:

40

3.1. DATA STRUCTURES

for (auto value : words) {
cout << value << endl;

}

In addition to the begin() and end() pair of iterators, there is also rbegin() and rend().
They work similarly, except that they are reverse iterators - they iterate in the other direction.
Thus, rbegin() actually points to the last element of the vector, and rend() to an imaginary
element before the first element of the vector. If we move a reverse iterator in a positive
direction, we will actually move it backwards (i.e. adding 1 to a reverse iterator makes it
point to the element before it in the vector).

Exercise 3.4. Use the rbegin()/rend() iterators to code a loop that iterates through a vector
in the reverse order.

Certain operators on a vector require the use of vector iterators. The insert and erase
member functions, used to insert and erase elements at arbitrary positions, take iterators
to describe positions. When removing the third element, we write

words.erase(words.begin() + 2);
The insert() function uses an iterator to know at what position an element should be

inserted. If it is passed the begin() iterator, the new element will be inserted at the start of
the array. Similarly, as an alternative to push_back() we could have written

words.insert(words.end(), "food")

to insert an element at the end of the vector.

Exercise 3.5. After adding these two lines, what would the loop printing every element of
the vector words output?

Problem 3.6.

Cut in Line cutinline

Queues

The queue structure corresponds to a plain, real-life queue. It supports mainly two opera-
tions: appending an element to the back of the queue, and extracting the first element of
the queue. The structure is in the queue file so it must be included using

#include<queue>

As with all standard library data structures, when declaring a queue we provide the
data type that we wish to store in it. A queue storing ints is created by

queue<int> q;
We use mainly five functions when dealing with queues:

« push(x): add the element x to the back of the queue,

41

https://heap.link/problem/cutinline

CHAPTER 3. THE C++ STANDARD LIBRARY

e pop(): remove the element from the front of the queue,
o front(): return the element from the front of the queue,
o empty(): return true if and only if the queue is empty, and

o size(): return the number of elements in the queue.

Exercise 3.7. There is a similar data structured called a dequeue. The standard library
version is named after the abbreviation deque instead. Use one of the C++ references from
the C++ chapter notes (p. 35) to find out what this structure does and what its member
functions are called.

Priority Queues
The queue structure is arguable unnecessary, since it can be easily emulated using a vector
(see Section 6.3). This is not the case for the next structure, the priority_queue.

The structure is similar to a queue, but instead of insertions and extractions happening
at one of the endpoints of the structure, the greatest element is always returned during
the extraction.

The structure is located in the same file as the queue structure, so add

#include<queue>

to use it.
To initialize a priority queue, use the same syntax as for the other structures:

priority_queue<int> pq;

This time there is one more way to create the structure that is important to remember. It
is not uncommon to prefer the sorting to be done according to some other order than
descending. For this reason there is another way of creating a priority queue. One can
specify a comparison function that takes two arguments of the type stored in the queue
and returns true if the first one should be considered less than the second. This function
can be given as an argument to the type in the following way:

bool cmp(int a, int b) {
return a > b;

}

priority_queue<int, vector<int>, cmp> pq;
// or equivalently
priority_queue<int, vector<int>, greater<int>> pq;

By default, a priority queue returns its greatest element. If we want it to return the smallest
element, the comparison function needs to say that the smallest of the two elements
actually is the greatest, somewhat counter-intuitively.

Interactions with the queue is similar to that of the other structures:

« push(x): add the element x to the priority queue,

42

N =T N - Y e N S

—-
-
- O

12

3.1. DATA STRUCTURES

« pop(): remove the greatest element from the priority queue,
« top(): return the greatest element from the priority queue,
o empty(): return true if and only if the priority queue is empty, and

o size(): return the number of elements in the priority queue.

Problem 3.8.

Akcija akcija

Cookie Selection cookieselection
Pivot pivot

Sets and Maps

The final data structures in this chapter are also the most powerful: the set and the map.

The set structure is similar to a mathematical set (Section B.1), in that it contains a
collection of unique elements. Unlike the vector, particular positions in the structure can
not be accessed using the [] operator. This may make sets seem worse than vectors. The
advantage of sets is twofold. First, we can determine membership of elements in a set
much more efficiently compared to when using vectors (in Chapters 5 and 6, what this
means will become clear). Secondly, sets are automatically sorted. This means we can
quickly find the smallest and greatest values of the set.

Elements are accessed only through iterators, obtained using the begin(), end() and
find() member functions. These iterators can be moved using the ++ and -- operators,
allowing us to navigate through the set in sorted (ascending) order (with begin() referring
to the smallest element).

Elements are inserted using the insert function and removed using the erase function.
A concrete example usage is found in Snippet 3.1

Snippet 3.1: Sets

set<int> s;
s.insert(4);
s.insert(7);
s.insert(1);

// find returns an iterator to the element if it exists
auto it = s.find(s);

// ++ moves the iterator to the next element in order
++it;

cout << *it << endl;

// if nonexistant, find returns end()
if (s.find(7) == s.end()) {
cout << "7 is not in the set" << endl;

}

43

https://heap.link/problem/akcija
https://heap.link/problem/cookieselection
https://heap.link/problem/pivot

17
18

20
21
22
23
24

R =T L Y T S P N

-
=
-~ O

12

CHAPTER 3. THE C++ STANDARD LIBRARY

// erase removes the specified element
s.erase(7);

if (s.find(7) == s.end()) {
cout << "7 1is not in the set" << endl;

}

cout << "The smallest element of s is " << xs.begin() << endl;

When looping through a set using the for (auto v : s) syntax, the values come in
ascending order.

A structure similar to the set is the map. It is basically the same as a set, except that
elements are called keys and have associated values. When declaring a map two types need
to be provided - that of the key and that of the value. To declare a map with string keys
and int values you write

map<string, int> m;

Accessing the value associated with a key x is done using the [] operator, for example,
m["Johan"1; would access the value associated with the "Johan" key.

Snippet 3.2: Maps

map<string, int> age;
age["Johan"] = 22;
age["Simon"] = 23;

if (age.find("Aron") == age.end()) {
cout << "No record of Aron's age" << endl;

}

"

cout << "Johan is " << agel["Johan"] <<
cout << "Anton is " << age["Anton"] <<

years old" << endl;

" years old" << endl;

age.erase("Johan");

cout << "Johan is " << age["Johan"] << " years old" << endl;

auto last = --age.end();

cout << (*last).first << " is
<< (*last).second << " years old" << endl;

"

Take careful note of what the map does when accessing non-existent keys using the []
operator.

Exercise 3.9. Maps can also be iterated through using the for (auto v : m) syntax. What
type will v have? Search online for documentation of the map to determine this.

Problem 3.10.
Secure Doors securedoors
Babelfish babelfish

44

https://heap.link/problem/securedoors
https://heap.link/problem/babelfish

3.2. MATH

3.2 Math

Many algorithmic problems require mathematical functions. In particular there is a heavy
use of square roots and trigonometric functions in geometry problems. These of these
functions are be found in another library:

#include <cmath>
It contains many common mathematical functions, such as

o abs(x): computes |x| (x if x > 0, otherwise —x)

e sqrt(x): computes \/x

o pow(x, y): computes x”

« exp(x): computes e*

o log(x): computes In(x)

o cos(x) / acos(x): computes cos(x) and arccos(x) respectively

o sin(x) / asin(x): computes sin(x) and arcsin(x) respectively

o tan(x) / atan(x): computes tan(x) and arctan(x) respectively

e ceil(x) / floor(x): computes [x| and | x| respectively

There are also min(x, y) and max(x, y) functions which compute the minimum and

maximum of the values x and y respectively. These are not in the cmath library however.
Instead, they are in algorithm.

Problem 3.11.

Vacuumba vacuumba
Ladder ladder
Half a Cookie halfacookie

3.3 Algorithms

A majority of the algorithms we regularly use from the standard library operate on se-
quences. To use algorithms, you need to include

#include <algorithm>

Sorting

Sorting a sequences is very easy in C++. The function for doing so is named sort. It
takes two iterators marking the beginning and end of the interval to be sorted and sorts it
in-place in ascending order. To sort the first 10 elements of a vector named v you would
use

sort(v.begin(), v.begin() + 10);

45

https://heap.link/problem/vacuumba
https://heap.link/problem/ladder
https://heap.link/problem/halfacookie

CHAPTER 3. THE C++ STANDARD LIBRARY

Note that the right endpoint of the interval is exclusive - it is not included in the interval
itself. This means that you can provide v.end() as the end of the interval if you want to
sort the entire vector.

As with priority_queues or sets, the sorting algorithm can take a custom comparator
if you want to sort according to some other order than that defined by the < operator. For
example,

sort(v.begin(), v.end(), greater<int>());

would sort the vector v in descending order. You can provide other sorting functions as
well. To sort numbers by their absolute value you can use the following comparator:

bool cmp(int a, int b) {
return abs(a) < abs(b);

sortiv. begin(), v.end(), cmp);

What happens if two values have the same absolute value when sorted with the above
comparator? With sort, this behavior is not specified: they can be ordered in any way.
Occasionally you want that values compared by your comparison function as equal are
sorted in the same order as they were given in the input. This is called a stable sort, and is
implemented in C++ with the function stable_sort.

To check if a vector already is sorted, the is_sorted function can be used. It takes the
same arguments as the sort function.

A typical use case is to want to sort a vector, but do the sorting by another value
associated to each vector element. There are two main ways to do this. A map can store
the association between the vector elements and the comparison elements, and looked up
using a comparator function. Other times, it is easier to use the built-in pair data structure
to store both values together in a vector. When sorting a vector of pairs, it first uses the
first value in the pair, and to break ties, sorts based on the second one.

Problem 3.12.

Shopaholic shopaholic
Busy Schedule busyschedule
Sort of Sorting sortofsorting
Searching

The most basic search operation is the find function. It takes two iterators representing an
interval and a value. If one of the elements in the interval equals the value, an iterator to
the element is returned. In case of multiple matches the first one is returned. Otherwise,
the iterator provided as the end of the interval is returned. The common usage is

find(v.begin(), v.end(), 5);

which would return an iterator to the first instance of s in the vector.

46

https://heap.link/problem/shopaholic
https://heap.link/problem/busyschedule
https://heap.link/problem/sortofsorting

3.4. STRINGS

To find out how many times an element appears in a vector, the count function takes
the same arguments as the find function and returns the total number of matches.

If the array is sorted, you can use the much faster binary search operations instead. The
binary_search function takes as argument a sorted interval, given by two iterators, and a
value. It returns true if the interval contains the value. The lower_bound and upper_bound
functions takes the same arguments as binary_search, but instead returns an iterator to the
first element not less and greater than the specified value, respectively. For more details
on how these are implemented, read Section 12.3.

A typical use case is to find the index in a vector of a given element. After retrieving
an vector iterator, the correct index can be retrieved by subtracting vec.begin() from the
vector.

Problem 3.13.
Massive Card Game massivecardgame

Permutations

In some problems, the solution involves iterating through all permutations (Section 18.2)
of a vector. As one of few languages, C++ has a built-in functions for this purpose:
next_permutation. The function takes two iterators as arguments and rearranges the interval
they specify to be the next permutation in lexicographical order. If there is no such
permutation, the interval instead becomes sorted and the function returns fatse. This
suggests the following common pattern to iterate through all permutations of a vector v:

sort(v.begin(), v.end());
do {
// do something with v
} while (next_permutation(v.begin(), v.end()));

This do-while-syntax is similar to the while loop, except the condition is checked after
each iteration instead of before. It is equivalent to

sort(v.begin(), v.end());
while (true) {

// do something with v

if (!next_permutation(v.begin(), v.end())) {

break;
}
}
Problem 3.14.

Veci Veci

3.4 Strings

We have already used the string type many times before. Until now one of the essential
features of a string has been omitted — a string is to a large extent like a vector of chars.
This is especially true in that you can access the individual characters of a string using the
[1 operator. For a string

47

https://heap.link/problem/massivecardgame
https://heap.link/problem/veci

CHAPTER 3. THE C++ STANDARD LIBRARY

string thecowsays = "boo";

the expression thecowsays[e] is the character 'b'. You can even push_back new characters
to the end of a string.

thecowsays.push_back('p');

would change the string to boop.

Problem 3.15.

Detailed Differences detaileddifferences
Autori autori

Skener skener
Conversions

In some languages, the barrier between strings and e.g. integers is more fuzzy than in
C++. In Java, for example, the code "4 + 2 would append the character '2" to the string
"4", yielding the string “42". This is not the case in C++ (what errors do you get if you try
to do this?).

Instead, there are other ways to convert between strings and other types. The easiest
way is through using the stringstream. A stringstream essentially works as a combined
cin and cout. An empty stream is declared by

stringstream ss;

Values can be written to the stream using the << operator and read from it using the >>
operator. This can be exploited to convert strings to numeric types:

stringstream numToString;

numToString << 5;

string val;

numToString >> val; // val is now the string "5"

and vice versa:

stringstream stringToNum;

stringToNum << "5";

int val;

stringToNum >> val; // val is now the integer 5

You can use a stringstream to determine what type the next word is. If you try to read
from a stringstream into an int but the next word is not an integer, the expression will
evaluate to false:

stringstream ss;
ss << "notaninteger";
int val;
if (ss >> val) {
cout << "read an integer!" << endl;
} else {
cout << "next word was not an integer" << endl;

}

48

https://heap.link/problem/detaileddifferences
https://heap.link/problem/autori
https://heap.link/problem/skener

3.5. INPUT/OUTPUT

Problem 3.16.
Filip filip
Stacking Cups cups

3.5 Input/Output

Input and output is primarily handled by the cin and cout objects, as previously witnessed.
While they are very easy to use, adjustments are sometimes necessary.

Detecting End of File

The first advanced usage is reading input until we run out of input (often called reading
until the end-of-file). Normally, input formats are constructed so that you always know
beforehand how many tokens of input you need to read. For example, lists of integers are
often either prefixed by the size of the list or terminated by some special sentinel value.
For those few times when we need to read input until the end we use the fact that cin >> x
is an expression that evaluates to false if the input reading failed. This is also the case if
you try to read an int but the next word is not actually an integer. This kind of input loop
thus looks something like the following:
int num;

while (cin >> num) {
// do something with num

}
Problem 3.17.
A Different Problem different
Statistics statistics
Input Line by Line

As we stated briefly in the C++ chapter, cin only reads a single word when used as input
to a string. This is a problem if the input format requires us to read input line by line. The
solution to this is the getline function, which reads text until the next newline:

getline(cin, str);

Be warned that if you use cin to read a single word that is the last on its line, the final
newline is not consumed. That means that for an input such as

word
blah blah

the code

string word;
cin >> word;
string line;
getline(cin, line);

49

https://heap.link/problem/filip
https://heap.link/problem/cups
https://heap.link/problem/different
https://heap.link/problem/statistics

CHAPTER 3. THE C++ STANDARD LIBRARY

would produce an empty line! After cin >> word the newline of the line word still remains,
meaning that getline only reads the (zero) remaining characters until the newline. To
avoid this problem, you need to use cin.ignore(); to ignore the extra newline before your
getline.

Once a line has been read we often need to process all the words on the line one by
one. For this, we can use the stringstream:

stringstream line(str);
string word;
while (line >> word) {
// do something with word

}
Problem 3.18.
Bacon Eggs and Spam baconeggsandspam
Compound Words compoundwords

Output Decimal Precision

Another common problem is that outputting decimal values with cout produces numbers
with too few decimals. Many problems stipulate that an answer is considered correct if it
is within some specified relative or absolute precision of the judges’ answer. The default
precision of cout is 107°. If a problem requires higher precision, it must be set manually
using e.g.

cout << setprecision(10);
If the function argument is x, the precision is set to 107*. This means that the above
statement would set the precision of cout to 1071, This precision is normally the relative

precision of the output (i.e. the total number of digits to print). If you want the precision
to be absolute (i.e. specify the number of digits after the decimal point) you write

cout << fixed;

Problem 3.19.

A Real Challenge areal
Pizza Crust pizza2
ADDITIONAL EXERCISES

Problem 3.20.

Apaxiaaaaaaaaaaaans! apaxiaaans
Different Distances differentdistances
Odd Man Out oddmanout
Timebomb timebomb
Missing Gnomes missinggnomes
A1 Paper atpaper

50

https://heap.link/problem/baconeggsandspam
https://heap.link/problem/compoundwords
https://heap.link/problem/areal
https://heap.link/problem/pizza2
https://heap.link/problem/apaxiaaans
https://heap.link/problem/differentdistances
https://heap.link/problem/oddmanout
https://heap.link/problem/timebomb
https://heap.link/problem/missinggnomes
https://heap.link/problem/a1paper

3.5. INPUT/OUTPUT

NoOTES

In this chapter, only the parts from the standard library we deemed most important to
problem solving were extracted. The standard library is much larger than this, of course.
While you will almost always get by using only what we discussed additional knowledge
of the library can make you a faster, more effective coder.

For a good overview of the library, heap.link/cpp:cppreference contains lists of the
library contents categorized by topic.

51

https://heap.link/cpp:cppreference

CHAPTER 3. THE C++ STANDARD LIBRARY

52

[

@

CHAPTER 4

Implementation Problems

The “simplest” kind of problem we solve are those where the problem statement is so
detailed that the difficult part is not figuring out the solution, but implementing it in
code. This type of problem is mostly given in the form of performing some calculation or
simulating some process based on a list of rules stated in the problem.

The Recipe - receptet
By Arash Rouhani. Swedish Olympiad in Informatics 2011, School Qualifiers.
You have decided to cook some food. The dish you are going to make requires N < 10 different
ingredients. For every ingredient i, you know the amount you have at home 4;, how much you need
for the dish #;, and how much it costs to buy per unit c;.
If you do not have a sufficient amount of some ingredient you need to buy the remainder from
the store. Your task is to compute the cost of buying the remaining ingredients.

This problem is not particularly hard. For every ingredient we need to calculate
the amount that we need to purchase. The only gotcha in the problem is the mistake of
computing this as 7 —h. The correct formula is max (0, n—h), required in case of the luxury
problem of having more than we need. We then multiply this number by the ingredient
cost and sum the costs up for all the ingredients. A solution would look something like
the following.

: procedure RecIPE(N, H, N, C)

ans < 0
fori <~ 0toN —-1do
ans < ans + max(0, N[i] — H[i]) - C[{]

return ans

4.1 Structuring your Code

The implementation problems are typically the easiest in a contest. They do not require
much algorithmic knowledge so more contestants are able to solve them. However, not
every implementation problem is easy to code. Just because implementation problems
are easy to spot, understand, and formulate a solution to, you should not underestimate
the difficulty in coding them. Contestants usually fail implementation problems either
because the algorithm you are supposed to implement is very complicated with many

53

https://heap.link/problem/receptet

CHAPTER 4. IMPLEMENTATION PROBLEMS

easy-to-miss details, or because the amount of code is very large. In the latter case, you
are more prone to bugs because more lines of code tend to include more bugs.

Let us study a straightforward implementation problem that turned out to be rather
difficult to code.

Game Rank - gamerank
By Jimmy Mardell. Nordic Collegiate Programming Contest 2016. CC BY-SA 3.0.
The gaming company Sandstorm is developing an online two player game. You have been asked to
implement the ranking system. All players have a rank determining their playing strength which
gets updated after every game played. There are 25 regular ranks, and an extra rank, “Legend’, above
that. The ranks are numbered in decreasing order, 25 being the lowest rank, 1 the second highest
rank, and Legend the highest rank.

Each rank has a certain number of “stars” that one needs to gain before advancing to the next
rank. If a player wins a game, she gains a star. If before the game the player was on rank 6-25, and
this was the third or more consecutive win, she gains an additional bonus star for that win. When
she has all the stars for her rank (see list below) and gains another star, she will instead gain one
rank and have one star on the new rank.

For instance, if before a winning game the player had all the stars on her current rank, she will
after the game have gained one rank and have 1 or 2 stars (depending on whether she got a bonus
star) on the new rank. If on the other hand she had all stars except one on a rank, and won a game
that also gave her a bonus star, she would gain one rank and have 1 star on the new rank.

If a player on rank 1-20 loses a game, she loses a star. If a player has zero stars on a rank and
loses a star, she will lose a rank and have all stars minus one on the rank below. However, one can
never drop below rank 20 (losing a game at rank 20 with no stars will have no effect).

If a player reaches the Legend rank, she will stay legend no matter how many losses she incurs
afterwards.

The number of stars on each rank are as follows:

¢ Rank 25-21: 2 stars

« Rank 20-16: 3 stars

o Rank 15-11: 4 stars

o Rank 10-1: 5 stars

A player starts at rank 25 with no stars. Given the match history of a player, what is her rank at
the end of the sequence of matches?
Input
The input consists of a single line describing the sequence of matches. Each character corresponds to

one game; ‘W represents a win and ‘L’ a loss. The length of the line is between 1 and 10 000 characters
(inclusive).

Output
Output a single line containing a rank after having played the given sequence of games; either an
integer between 1 and 25 or “Legend”

A very long problem statement! The first hurdle is finding the energy to read it from

54

https://heap.link/problem/gamerank

o 0N N R W N -

-
o

11

4.1. STRUCTURING YOUR CODE

start to finish without skipping any details. Not much creativity is needed here - indeed,
the algorithm to implement is given in the statement. Despite this, it is not as easy as one
would think. Although it was the second most solved problem at the contest where it
was used in, it was also the one with the worst success ratio. On average, a team needed
3.59 attempts before getting a correct solution, compared to the runner-up problem at
2.92 attempts. None of the top 6 teams in the contest got the problem accepted on their
first attempt. Failed attempts cost a lot. Not only in absolute time, but many forms of
competition include additional penalties for submitting incorrect solutions.

Implementation problems get much easier when you know your programming lan-
guage well and can use it to write good, structured code. Split code into functions, use
structures, and give your variables good names and implementation problems become
easier to code. A solution to the Game Rank problem which attempts to use this approach
is given here:

#include <bits/stdc++.h>
using namespace std;
int curRank = 25, curStars = o, conseqWins = o;

int starsOfRank() {
if (curRank >= 21) return 2;
if (curRank >= 16) return 3;
if (curRank >= 11) return 4;
if (curRank >= 1) return 5;
assert(false);

}

void addStar()
if (curStars
--curRank;
curStars = o;

[T

starsOfRank()) {

}

++cursStars;

}

void addwin() {
int curStarsWon = 1;
++conseqWins;
if (conseqWins >= 3 && curRank >= 6) curStarsWon++;

for (int i = 0; 1 < curStarsWon; i++) {
addStar();
}
}

void loseStar() {
if (curStars == 0) {
if (curRank == 20) return;
++curRank;
curStars = starsOfRank();

55

38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59

CHAPTER 4. IMPLEMENTATION PROBLEMS

}

--curStars;

}

void addLoss() {
conseqWins = ©o;
if (curRank <= 20) loseStar();

}
int main() {
string seq;
cin >> seq;
for (char res : seq) {
if (res == 'W') addwin();

else addLoss();

if (curRank == o) break;

assert(1 <= curRank && curRank <= 25);

assert(o <= curStars &§& curStars <= starsOfRank());

}
if (curRank == @) cout << "Legend" << endl;
else cout << curRank << endl;

Note the use of the assert() function. The function takes a single boolean parameter
and crashes the program with an assertion failure if the parameter evaluated to fatse. It
allows us to verify that assumptions we make regarding the internal state of the program
indeed holds. In fact, when the above solution was written the assertions in it caught some
bugs before it was submitted!

Next, we work through a complex implementation problem, starting with a long,
hard-to-read solution with a few bugs. Then, we refactor it a few times until it is correct
and easy to read.

Mate in One — mateinone

Introduction to Algorithms at Danderyds Gymnasium
"White to move, mate in one."

When you are looking back in old editions of the New in Chess magazine, you find loads of
chess puzzles. Unfortunately, you realize that it was way too long since you played chess. Even trivial
puzzles such as finding a mate in one now far exceed your ability.

But, perseverance is the key to success. You realize that you can instead use your new-found
algorithmic skills to solve the problem by coding a program to find the winning move.

You will be given a chess board, which satisfy:

« No player may castle.

« No player can perform an en passant”.

« The board is a valid chess position.

« White can mate black in a single, unique move.

56

https://heap.link/problem/mateinone

N A AW R~

4.1. STRUCTURING YOUR CODE

Write a program to output the move white should play to mate black.

Input

The board is given as a 8 x 8 grid of letters. The letter . represent an empty space, the characters
pbnrgk represent a white pawn, bishop, knight, rook, queen and king, and the characters pBnRQK
represents a black pawn, bishop, knight, rook, queen and king.

Output
Output a move on the form a1bz, where a1 is the square to move a piece from (written as the column,
a-h, followed by the row, 1-8) and b2 is the square to move the piece to.

“If you are not aware of this special pawn rule, do not worry — knowledge of it is irrelevant with regard to
the problem.

Our first solution attempt clocks in at about 300 lines.

#include <bits/stdc++.h>
using namespace std;

#define rep(i,a,b) for (int i = (a); i < (b); ++i)
#define trav(it, v) for (auto§ it : v)

#define all(v) (v).begin(), (v).end()

typedef pair<int, int> ii;

typedef vector<ii> vii;

template <class T> int size(T &x) { return x.size(); }

char board[8][8];
bool iz_empty(int x, int y) {
return board[x][y] == '.";
}
bool is_white(int x, int y) {
return board[x][y] >= 'A' && board[x][y] <= 'Z';

bool is_valid(int x, int y) {
return x >= 0 §§ x < 8 §&5y >= 0 §5 y < 8;

int rook[8][2] = {

b
void display(int x, int y) {
printf("%c%d", y + 'a', 7 - x + 1);
vii next(int x, int y) {
vii res;

if (board[x1[y] == 'P' || board[x1[y] == 'p") {
// pawn

int dx = is_white(x, y) ? -1 : 1;

if (is_valid(x + dx, y) && iz_empty(x + dx, y)) {
res.push_back(ii(x + dx, y))

}

if (is_valid(x + dx, y - 1)
§& is_white(x, y) != is_white(x + dx, y - 1)) {

57

CHAPTER 4. IMPLEMENTATION PROBLEMS

55 res.push_back(ii(x + dx, y - 1));

56 }

57

58 if (is_valid(x + dx, y + 1)

59 §6 is_white(x, y) != is_white(x + dx, y + 1)) {
60 res.push_back(ii(x + dx, y + 1));

61

62

63 } else if (board[x][y] == 'N' || board[x][y] == 'n") {
64 // knight

65

66 for (int i = 0; 1 < 8; i++) {

67 int nx = x + rook[i][e],

68 ny =y + rook[i][1];

69

70 if (is_valid(nx, ny) && (iz_empty(nx, ny) ||
71 is_white(x, y) != is_white(nx, ny))) {
72 res.push_back(ii(nx, ny));

73 }

74 }

75

76 } else if (board[x][y] == 'B' || board[x][y] == 'b") {
77 // bishop

78

79 for (int dx = -1; dx <= 1; dx++) {

80 for (int dy = -1; dy <= 1; dy++) {

81 if (dx == 0 &§& dy == o)

82 continue;

83

84 if ((dx == 0) != (dy == 0))

85 continue;

86

87 for (int k = 1; ; k++) {

88 int nx = x + dx * Kk,

89 ny =y +dy * k;

90

91 if (!is_valid(nx, ny)) {

92 break;

93

94

95 if (iz_empty(nx, ny) || is_white(x, y) != is_white(nx, ny)) {
96 res.push_back(ii(nx, ny));

97

98

99 if (liz_empty(nx, ny)) {

100 break;

101

102 }

103 }

104 }

105

106 } else if (board[x][y] == 'R’ || board[x][y] == 'r") {
107 // rook

108

109 for (int dx = -1; dx <= 1; dx++) {

110 for (int dy = -1; dy <= 1; dy++) {

111 if ((dx == @) == (dy == 0))

112 continue;

113

114 for (int k = 1; ; k++) {

115 int nx = x + dx * k,

116 ny =y +dy * k;

117

118 if (!is_valid(nx, ny)) {

119 break;

120 }

121

122 if (iz_empty(nx, ny) || is_white(x, y) != is_white(nx, ny)) {
123 res.push_back(ii(nx, ny));

124 }

125

126 if (!iz_empty(nx, ny)) {

127 break;

128

129 }

130 }

131 }

58

132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208

4.1. STRUCTURING YOUR CODE

} else if (board[x][y] == 'Q' || board[xI[y] == 'g") {
// queen
for (int dx = -1; dx <= 1; dx++) {

for (int dy = -1; dy <= 1; dy++) {
if (dx == 0 &§& dy == 0)

continue;
for (int k = 1; ; k++) {
int nx = x + dx * Kk,
ny =y +dy * k;

if (!is_valid(nx, ny)) {
break;

if (iz_empty(nx, ny) || is_white(x, y) !'= is_white(nx, ny)) {

res.push_back(ii(nx, ny));

if (liz_empty(nx, ny)) {

break;
}
}
}
}
} else if (board[x][y] == 'K’ || board[xI[y] == 'k') {
// king
for (int dx = -1; dx <= 1; dx++) {
for (int dy = -1; dy <= 1; dy++) {
if (dx == 0 &§& dy == 0)
continue;
int nx = x + dx,
ny =y + dy;
if (is_valid(nx, ny) && (iz_empty(nx, ny)
is_white(x, y) != is_white(nx, ny))) {
res.push_back(ii(nx, ny))
}
}
} else {

assert(false);

return res;

bool is_mate() {

bool can_escape = false;
char new_board[8][8];

for (int x = 0; !can_escape &§& x < 8; x++) {
for (int y = 0; !can_escape &5 y < 8; y++) {
if (liz_empty(x, y) &§& !is_white(x, y)) {

vii moves = next(x, y);
for (int i = =05 i < size(moves); i++) {
for (int j = o; j < 8; Jj++)
for (int k = o; < 8; k++)
new board[J][k] = board[)][k],

new_board[moves[i]. flrst][moves[l] second] = board[x][y];

new_board[x][y] =

swap(new_board, board);

bool is_killed = false;
for (int j = o; !is_killed && j < 8; j++) {

59

209
210
211
212

214
215
216
217
218
219

220

222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286

CHAPTER 4. IMPLEMENTATION PROBLEMS

}

for (int k = o; !is_killed &5 k <

8; k++) {

if (!iz_empty(j, k) && is_white(j, k)) {

vii nxts = next(j

k)

for (int 1 = 0; 1 < size(nxts); 1++) {

if (board[nxts[1].first][nxts[1].second] == 'k') {
is_killed = true;
break;

}
}
}
}

swap(new_board, board);

if (lis_killed) {
can_escape = true;
break;

}
}

return !can_escape;

int

main()

for (int i = 0; i < 8; i++) {

for (int j = 0; j < 8; j++) {
scanf("%c", &board[il[j])

scanf("\n");

char new_board[8][8];
for (int x = 0; x < 8; x++) {

60

for (int y = 0; y < 8; y++) {

if (liz_empty(x, y) &§& is_white(x, y)) {

vii moves = next(x, y);

for (int i = 0; i < size(moves); i++) {

for (int j = o; j
for (int k = ef

8;
<
new_board[j]1[k] =

<
k
]

j++)

8; k++)
board[jI[k];

new_board[moves[i]. flrst][moves[l] second] = board[x][y];

new_board[x][y] =

swap(new_board, board);

if (board[moves[i].first][moves[i].second] == 'P' &&

moves[i].first == o

board[moves[i].first][moves[i].second] = 'Q';

if (is_mate()) {

printf("%c%d%c%d\n",

y +

‘a'y, 7 - x + 1,

moves[i].second + 'a', 7 - moves[i].first + 1);
return o;
board[moves[i].first][moves[i].second] = 'N';
if (is_mate(
printf("%c%d%c%d\n", y + 'a', 7 - x + 1,
moves[il.second + 'a', 7 - moves[i].first + 1);
return o;
} else {
if (is_mate()) {
printf("%c%d%c%d\n", y + 'a', 7 - x + 1,

287
288
289
290
291
292
293
294
295
296
297
298
299
300
301

4.1. STRUCTURING YOUR CODE

moves[i].second + 'a', 7 - moves[i].first + 1);
return o;

}

swap(new_board, board);

}
}
}
}

assert(false);

return o;

That is a lot of code! Note how there are a few obvious mistakes which makes the code
harder to read, such as typo of iz_empty instead of is_empty, or how the list of moves for
the knight is called rook. Our final solution reduces this to less than half the size.

Exercise 4.1. Read through the above code carefully and consider if there are better ways
to solve the problem. Furthermore, it has a bug - can you find it?

First, let us clean up the move generation a bit. Currently, it is implemented as the
function next, together with some auxiliary data (lines 25-179). It is not particularly
abstract, plagued by a lot of code duplication.

The move generation does not need a lot of code. Almost all the moves of the pieces
can be described in the same way, as: “pick a direction out of a list D and move at most
L steps along this direction, stopping either before exiting the board or taking your own
piece, or when taking another piece”. For the king and queen, D is all 8 directions one step
away, with L = 1 for the king and L = oo for the queen.

Implementing abstraction is done with little code.

const vii DIAGONAL = {{-1, 1}, {-1, 1}, {1, -1}, {1, 1}};
const vii CROSS = {{e, -1}, {eo, 1}, {-1, o}, {1, o}};
const vii ALL_MOVES = {{-1, a1}, {-1, 1}, {1, -1}, {1, 1},
{o, -1}, {o, 1}, {-1, o}, {1, o}};
const vii KNIGHT = {{-1, -2}, {-1, 2}, {1, -2}, {1, 2},
{_27 _1}1 {_21 1}1 {27 _1}7 {21 1}};
vii directionMoves(const vii& D, int L, int x, int y) {
vii moves;
trav(dir, D) {
rep(i,1,L+1) {
int nx = x + dir.first = i, ny = y + dir.second = i;
if (!isvalid(nx, ny)) break;
if (isEmpty(nx, ny)) moves.emplace_back(nx, ny);
else {
if (isWhite(x, y) != isWhite(nx, ny)) moves.emplace_back(nx, ny);
break;
}
}
}
return moves;

}

61

O N AWV AW N e

10

CHAPTER 4. IMPLEMENTATION PROBLEMS

A short and sweet abstraction, that will prove very useful. It handles all possible moves,

except for pawns. These have a few special cases.

vii pawnMoves(int x, int y) {
vii moves;
if (x == 0 || x ==7) {
vii queenMoves = directionMoves(ALL_MOVES, 16, X, Vy);
vii knightMoves = directionMoves(KNIGHT, 1, x, y);
queenMoves.insert(queenMoves.begin(), all(knightMoves));
return queenMoves;

}

int mv

= (isWhite(x, y) ? - 1 : 1)

if (isvalid(x + mv, y) && isEmpty(x + mv, y)) {
moves.emplace_back(x + mv, y);

bool

canMoveTwice = (isWhite(x, y) ? x == T X == 1);

if (canMoveTwice && isValid(x + 2 * mv, y) &§& isEmpty(x + 2 * mv, y)) {
moves.emplace_back(x + 2 * mv, y);

}
}

auto take = [&](int nx, int ny) {
if (isvalid(nx, ny) && !isEmpty(nx, ny)

&&

isWhite(x, y) !'= isWhite(nx, ny))

moves.emplace_back(nx, ny);

b

take(x
take(x
return

+mv, y - 1);
+mv, y o+ 1);
moves;

This pawn implementation also takes care of promotion, rendering the logic previously
implementing this obsolete.
The remainder of the move generation is now implemented as:

vii next(int x, int y) {
vii moves;
switch(toupper(board[x][y]l)) {

case
case
case
case
case
case
}

return

'Q': return directionMoves(ALL_MOVES, 16, X, y);
'R': return directionMoves(CROSS, 16, X, V);
'B': return directionMoves(DIAGONAL, 16, X, Vy);
'N': return directionMoves(KNIGHT, 1, x, y);
'K': return directionMoves(ALL_MOVES, 1, x, Vy);
'P': return pawnMoves(x, y);

moves;

These functions make up a total of about 50 lines - a reduction to a third of how the
move generation was implemented before. The trick was to rework all code duplication

into a much cleaner abstraction.

We also have a lot of code duplication in the main (lines 234-296) and is_mate (lines

181-232) functions. Both functions loop over all possible moves, with lots of duplication.
First of all, let us further abstract the move generation to not only generate the moves a

62

(<IN NV N

NN R W N =

o o NN AV R W N =

-
[}

4.1. STRUCTURING YOUR CODE

certain piece can make, but all the moves a player can make. This is done in both functions,
so we should be able to extract this logic into only one place:

vector<pair<ii, ii>> getMoves(bool white) {
vector<pair<ii, ii>> allMoves;
rep(x,0,8) rep(y,0,8) if (!isEmpty(x, y) && isWhite(x, y) == white) {
vii moves = next(x, y);
trav(it, moves) allMoves.emplace_back(ii{x, y}, it);
}
return allMoves;
}

We also have some duplication in the code making the moves. Before extracting this
logic, we will change the structure used to represent the board. A char[8]1[8] is a tedious
structure to work with. It is not easily copied or sent as parameter. Instead, we use a
vector<string>,typedeféd.asBoard:

typedef vector<string> Board;

We then add a function to make a move, returning a new board:

Board doMove(pair<ii, ii> mv) {
Board newBoard = board;
ii from = mv.first, to = mv.second;
newBoard[to.first][to.second] = newBoard[from.first][from.second];
newBoard[from.first][from.second] = '.';
return newBoard;
}

Hmm... there should be one more thing in common between the main and is_mate
functions. Namely, to check if the current player is in check after a move. However, it
seems this is not done in the main function - a bug. Since we do need to do this twice, it
should probably be its own function:

bool inCheck(bool white) {
trav(mv, getMoves(!white)) {
ii to = mv.second;
if (!isEmpty(to.first, to.second)
§& isWhite(to.first, to.second) == white
&5 toupper(board[to.first][to.second]) == 'K') {
return true;
}
}
return false;

}
Now, the long is_mate function is much shorter and readable, thanks to our refactoring:
bool isMate() {
if (!inCheck(false)) return false;

Board oldBoard = board;
trav(mv, getMoves(false)) {

63

N-JRN-CRENE- Y

O 00N AW AW N =

CHAPTER 4. IMPLEMENTATION PROBLEMS

board = doMove(mv);
if (!inCheck(false)) return false;
board = oldBoard;

}

return true;

}

A similar transformation is now possible of the main function, that loops over all moves
white make and checks if black is in mate:

int main() {
rep(i,o,8) {
string row;
cin >> row;
board.push_back(row);
}
Board oldBoard = board;
trav(mv, getMoves(true)) {
board = doMove(mv);
if (!inCheck(true) && isMate()) {
outputSquare(mv.first.first, mv.first.second);
outputSquare(mv.second.first, mv.second.second);
cout << endl;
break;
}
}

return o;

Now, we have actually rewritten the entire solution. From the 300-line behemoth with
gigantic functions, we have refactored the solution into a few, short functions with are
easy to follow. The rewritten solution is less than half the size, clocking in at less than 140
lines (the author’s own solution is 120 lines). Learning to code such structured solutions
comes to a large extent from experience. During a competition, we might not spend time
thinking about how to structure our solutions, instead focusing on getting it done as
soon as possible. However, spending 1-2 minutes thinking about how to best implement a
complex solution could pay off not only in faster implementation times (such as halving
the size of the program) but also in being less buggy.

To sum up: implementation problems should not be underestimated in terms of
implementation complexity. Work on your coding best practices and spend time practicing
coding complex solutions and you will see your implementation performance improve.

ADDITIONAL EXERCISES

Problem 4.2.

Flexible Spaces flexible

Permutation Encryption permutationencryption
Jury Jeopardy juryjeopardy

64

https://heap.link/problem/flexible
https://heap.link/problem/permutationencryption
https://heap.link/problem/juryjeopardy

4.1. STRUCTURING YOUR CODE

Fun House funhouse
Settlers of Catan settlers2

Cross Cross

BASIC Interpreter basicinterpreter
Cat Coat Colors catcoat
NOTES

There are many good resources to help you become proficient at writing readable and
simple code. Clean Code [32] describes many principles that helps in writing better code.
It includes good walk-throughs on refactoring, and shows in a very tangible fashion how
coding cleanly also makes coding easier.

Code Complete [33] is a huge tome on improving your programming skills. While
much of the content is not particularly relevant to coding algorithmic problems, chapters
5-19 give many suggestions on coding style.

Different languages have different best practices. Some resources on improving your
skills in whatever language you code in are:

C++ Effective C++ [35], Effective Modern C++ [36], Effective STL [34], by Scott Meyers,

Java Effective Java [7] by Joshua Bloch,

Python Effective Python [46] by Brett Slatkin, Python Cookbook [4] by David Beazley and
Brian K. Jones.

65

https://heap.link/problem/funhouse
https://heap.link/problem/settlers2
https://heap.link/problem/cross
https://heap.link/problem/basicinterpreter
https://heap.link/problem/catcoat

CHAPTER 4. IMPLEMENTATION PROBLEMS

66

CHAPTER 5

Time Complexity

How can you know if your algorithm is fast enough before coding it? In this chapter
we examine this question from the perspective of time complexity, the tool of choice in
algorithm analysis to determine how fast an algorithm is.

We start our study of complexity by looking at a new sorting algorithm - insertion
sort. Just like selection sort (studied in Chapter 1), insertion sort works by sorting the
sequence one element at a time.

5.1 The Complexity of Insertion Sort

Insertion sort iteratively ensure that all of the first i elements of the input sequence are
sorted — first for i = 1, then for i = 2, etc, up to i = n, at which point the entire sequence is
sorted.

Insertion Sort

We want to sort the list ag, a5, ..., an—1 of N integers. If we know that the first K elements
o> ..., Ag-1 are sorted, we can make the list ay, ..., ax sorted by taking the element ax and
inserting it into the correct position in the already-sorted prefix ay, ..., ax-1.

For example, we know that a list of a single element is always sorted, so we can use
that ag is sorted as a base case. We can sort ag, a; by checking whether a; should be to
the left or to the right of a. In the first case, we swap the two numbers.

Once we have sorted ay, a;, we insert a, into the sorted list. If it is larger than ay, it is
already in the correct place. Otherwise, we swap a; and a,, and keep going until we either
find the correct location, or determine that the number was the smallest one in which case
the correct location is in the beginning.

This procedure is then repeated for every remaining element. []

In this section we determine how long time insertion sort takes to run. When analyzing
an algorithm we do not to compute the actual wall clock time an algorithm takes. Indeed,
this would be nearly impossible a priori - modern computers are complex beasts with
often unpredictable behavior. Instead, we try to approximate the growth of the running
time, as a function of the size of the input.

67

1
2:
3:
4

CHAPTER 5. TIME COMPLEXITY

Competitive Tip

While it is difficult to measure the exact wall-clock time of your algorithm just by analyzing the
algorithm and code, it is sometimes a good idea to benchmark your solution before submitting
it to the judge. This way you trade a few minutes of time (constructing the worst-case input)
for avoiding many time limit exceeded verdicts. If you are unsure of your solution and the
competition format penalizes you for rejected submissions, this trade-off can have good value.

When sorting fixed-size integers the size of the input would be the number of ele-
ments we are sorting, N. We denote the time that the algorithm takes in relation to N as
T(N). Since an algorithm often has different behaviors depending on how an instance is
constructed, this is taken to be the worst-case time, over every instance of N elements.

e L[s [s
PN

5 |2] 4 |1] 3] 0 |a=1

PN

T T s [e
SN NN

2 | 4 | 5 |1] 3] 0 |B5=3

PN

EEEEE RN

—
[N}
w
e~
ot
()
~
ot
Il
at

Figure 5.: Insertion sort sorting the sequence 5,2,4,1,3,0.

To properly analyze an algorithm, we need to be more precise about exactly what it
does. We give the following pseudo code for insertion sort:

procedure INSERTIONSORT(A)
fori <~ 0toN -1do
jei

while j > 0and A[j] < A[j—1] do

68

5.1. THE COMPLEXITY OF INSERTION SORT

Swap A[j] and A[j - 1]
Jj<i-1

To analyze the running time of the algorithm, we make the assumption that any
“sufficiently small” operation takes the same amount of time - exactly 1 (of some undefined
unit). We have to be careful in what assumptions we make regarding what a sufficiently
small operation means. For example, sorting N numbers is not a small operation, while
adding or multiplying two fixed-size numbers is. Multiplication of integers of arbitrary
size is not a small operation (see the Karatsuba algorithm, Section ??).

In our program every line happens to represent a small operation. However, the two
loops may cause some lines to execute more than once. The outer for loop executes N
times. The number of times the inner loop runs depends on how the input looks. We let
t; mean the number of iterations the inner loop runs during the i’th iteration of the outer
loop. These are included in Figure 5.1 for every iteration.

Now we can annotate our pseudo code with the number of times each line executes.

: procedure INSERTIONSORT(A) > Sorts the sequence A containing N elements
fori <~ 0toN —-1do > Runs N times, cost 1
j<i > Runs N times, cost 1

while j > 0and A[j] < A[j—1] do > Runs YN, ¢; times, cost 1

Swap A[j] och A[j-1] > Runs YN, ¢; times, cost 1

j<j-1 > Runs YN ¢; times, cost 1

AR A

T(N) can be expressed as

N-1
t,‘) +2N.

ron e (5o (5] (£0) o

i=0

We still have some ¢; variables left so we do not truly have a function of N. We can
eliminate this by realizing that in the worst case t; = i. This occurs when the list we are
sorting is in descending order. Each element must then be moved to the front, requiring i
swaps for the i’th element.

With this substitution we can simplify the expression:

N-1

T(N):s(Zi)+zN:3

i=0

N-1)N 3
!+2N:5(N2—N)+2N

3 N
=ZN*+ =
2 2

This function grows quadratically with the number of elements of N. The approximate
growth of the time a function takes has an important role in algorithm analysis, so a special
notation was developed for it.

69

CHAPTER 5. TIME COMPLEXITY

5.2 Asymptotic Notation

We almost always express the running time of an algorithm in what is called asymptotic
notation. The notation captures the behavior of a function as its arguments grow. For
example, the function T(N) = 3N? + & that described the running time of insertion sort,
isbounded by ¢ - N 2 for large N, for some constant c. We write

T(N) = O(N?)

when this is the case.

Similarly, the linear function 2N + 15 is bounded by ¢ - N for large N, with ¢ = 3, so
2N +15 = O(N). The notation only captures upper bounds though (and not the actual
rate of growth). We could therefore say that 2N +15 = O(N?), even though this particular
upper bound is very lax. However, N is not bounded by ¢ - N for any constant ¢ when N
is large, so N2 # O(N). This also corresponds to intuition — quadratic functions grows
faster than linear functions.

Definition 5.1 — O-notation
Let f and g be functions from R to Ry. If there exists positive constants 7, and ¢
such that f(n) < cg(n) whenever n > ny, we say that f(n) = O(g(n)).

100NV + 1337

N?

N

Figure 5.2: All linear functions are eventually outgrown by N2, so an + b = O(n?).

Intuitively, the notation means that f(n) grows slower than or as fast as g(n), within
a constant factor. Any quadratic function an? + bn + ¢ = O(n?*). Similarly, any linear
function an + b = O(n?*) as well. The definition implies that for two functions f and g
which are always within a constant factor of each other, we have that both f(n) = O(g(n))

and g(n) = O(f(n)).

70

5.2. ASYMPTOTIC NOTATION

We can use this definition to prove that the running time of insertion sort is O(N?),
even in the worst case.

Example 51 Prove that N2 + I = O(N?).

Proof. When N >1we have N* > N (by multiplying both sides with N). This means
that

3, N 3, N 4, 5

“N?+ = <N+ —=-N?=2N

2 2 2 2 2
for N > 1. Using the constants ¢ = 2 and n, = 1 we fulfill the condition from the
definition. O

For constants k we say that k = O(1). This is a slight abuse of notation, since neither k
nor 1 are functions, but it is a well-established abuse. If you prefer, you can instead assume
we are talking about functions k(N) = kand 1(N) = L

Competitive Tip

The following table describes approximately what complexity you need to solve a problem of size
n if your algorithm has a certain complexity when the time limit is about 1 second.

Complexity | n
O(logn) 20109
o(/n) | 10"
0o(n) 107
O(nlogn) | 10°
O(n\/n) 10°
o(n?) 5-10°
O(n’logn) | 2-10°
o(n*) 300
o(2") 24
o(n2") 20
o(n*2") 17
O(n!) 1

Table 5.1: Approximations of needed time complexities

Note that this is in no way a general rule — while complexity does not bother about constant
factors, wall clock time does!

Complexity analysis can also be used to determine lower bounds on the time an
algorithm takes. To reason about lower bounds we use Q-notation. It is similar to O-
notation except it describes the reverse relation.

71

CHAPTER 5. TIME COMPLEXITY

Definition 5.2 — Q-notation
Let f and g be non-negative functions from R to Ry. If there exists positive constants
no and ¢ such that cg(n) < f(n) for every n > ng, we say that f(n) = Q(g(n)).

We know that the complexity of insertion sort has an upper bound of O(N?) in the
worst-case, but does it have a lower bound? It actually has the same lower bound as upper
bound, i.e. T(N) = Q(N?).

Example 5.2 Prove that N2 + I = O(N?).

Proof. When N > 1, we have %Nz + g > N2. Using the constants ¢ = 1and ny = 1 we
fulfill the condition from the definition. O

In this case, both the lower and the upper bound on the worst-case running time of
insertion sort coincided (asymptotically). We have another notation for when this is the
case:

Definition 5.3 — ©-notation
If f(n) = O(g(n)) and f(n) = Q(g(n)), we say that f(n) = @(g(n)).

Thus, the worst-case running time for insertion sort is @ (n?).

There are many ways of computing the time complexity of an algorithm. The most
common case is when a program has K nested loops, each of which performs O(M)
iterations. The complexity of these loops are then O(MX - f(N)) if the inner-most
operation takes O(f(N)) time. In Chapter 7 we study the time complexity of some so-
called recursive functions, and in Chapter 12 we see some ways of computing the time
complexity of specific type of recursive solution called divide and conquer algorithms.

Exercise 5.1. Find a lower and an upper bound that coincide for the best-case running
time for insertion sort.

Exercise 5.2. Give a ®(n) algorithm and a ©(1) algorithm to compute the sum of the n
first integers.

Exercise 5.3. Prove, using the definition, that 10n® + 7n — 5 + log’ n = O(n?). What
constants ¢, 1 did you get?

Exercise 5.4. Prove that f(n) + g(n) = ®(max{f(n), g(n)}) for non-negative functions
fandg.
Exercise 5.5. Determine whether, with proof:

1 Is2" = 0(2")?

2. [s22" = 0(2")?

Exercise 5.6. Prove that (n + a)? = @(n?) for positive constants a, b.

72

N

10:

2 *® N 2w ke

5.2. ASYMPTOTIC NOTATION

Amortized Complexity

Consider the following algorithm that counts the number of times a value v appears in a
vector A.

: procedure COUNTOCCURANCES(A, v)

N < length of A
i< 0
ans < 0
while i + N do
while i < N and A[i] # v do
i—i+l1
if i # N then
ans < ans +1
i<—i+l

It computes the number of occurrences of a value in a sequence (in a somewhat cumber-
some way). We repeatedly scan through the sequence A to find the next occurrence of
v. Whenever we find one, we increase the answer by 1 and resume our scanning. This
procedure continues until we have scanned through the entire sequence.

What is the time complexity of this procedure? How do we handle the fact that neither
the outer nor the inner loop of the algorithm repeats a predictable number of iterations
each time? For example, the other loop would iterate N times if every element equals v,
but only once if it does not contain the value at all. Similarly, the number of iterations of
the inner loop depends on the position of the elements in A which equals v.

We find help in a technique called amortized complexity. The concept of amortization
is best known from loans. It represents the concept of periodically paying of some kind of
debt until it has been paid off in full.

When analyzing algorithms, the “debt” is the running time of the algorithm. We try to
prove that the algorithm has a given running time by looking at many, possibly uneven
parts that together over the long run sums up to the total running time, similarly to how a
loan can be paid of by amortization.

A quick analysis of the counting algorithm gives us a good guess that the algorithm
runs in time @(N). It should be clear that it’s inner loop at lines 6-7 that dominates the
running time of the algorithm. The question is how we compute the number of times it
executes even though we do not know how many times it executes nor how many iterations
each execution takes. We try the amortization trick by looking at how many iterations it
performs over all those executions, no matter how many they are. Assume that the loop
is run k times (including the final time when the condition first is false) and each run
iterates b; times (1 < i < k). We claim that

b1+b2+"'+bk:®(N).

73

]

A A B]

CHAPTER 5. TIME COMPLEXITY

Our reasoning is as follows. There are two ways the variable i can increase. It can either
be increased inside the loop at line 7, or at line 10. If the loop executes N times in total, it
will certainly complete and never be executed again since the loop at line 5 completes too.
This gives us Y~ b; = O(N).

On the other hand, we get one iteration for every time i is increased. If i is increased
on line 7, it was done within a loop iteration. If i is increased on line 9, we instead count
the final check if the loop just before it once. Each addition of i happens together with an
iteration of the loop, so ¥, b; = Q(N). Together, these two results prove our claim.

This particular application of amortized complexity is called the aggregate method.

Exercise 5.7. Consider the following method of adding 1 to a binary integer represented by
a list of its digits.

: procedure BINARYINCREMENT(D)

i< 0

while D[i] =1do > Add 1 to the i’th digit
D[i]=0 > We add 1to a 1 digit, resulting in a o digit plus a carry
i< i+1

D[i]=1 > We add 1 to a digit not resulting in a carry

The algorithm is the binary version of the normal addition algorithm where the two
addends are written above each other and each resulting digit is computed one at a time,
possibly with a carry digit. What is the amortized complexity of this procedure over 2"
calls, if D starts out as 0?

5.3 NP-complete Problems

Of particular importance in computer science are the problems that can be solved by
algorithms running in polynomial time, i.e. in O(#°¢) time for some constant ¢ > 0, often
considered to be the “tractable” problems. For some problems we do not yet know if
there is an algorithm whose time complexity is bounded by a polynomial. One particular
class of these are the NP-complete problems. They have the property that they are all
reducible to one another, in the sense that a polynomial-time algorithm to any one of
them yields a polynomial-time algorithm to all the others. Many of these NP-complete
problems (or problems reducible to such a problem, a property called NP-hardness) appear
in algorithmic problem solving. It is good to know that they exist and that it is unlikely you
will find a polynomial-time solution. During the course of this book, you will occasionally
see such problems with their NP-completeness mentioned.

5.4 Other Types of Complexities

There are several other types of complexities aside from the time complexity. For example,
the memory complexity of an algorithm measures the amount of memory it uses. We

74

5.5. THE IMPORTANCE OF CONSTANT FACTORS

use the same asymptotic notation when analyzing it. In most modern programming
competitions, the allowed memory usage is high enough for the memory complexity not
be an issue - if you get memory limit problems you also tend to have time limit problems.
However, it is still of interest in computer science (and thus algorithmic problem solving)
and computer engineering in general.

Another common type of complexity is the query complexity. In some problems
(like the guessing problem from Chapter 1), we are given access to some kind of external
procedure (called an oracle) that computes some value given parameters that we provide.
A procedure call of this kind is called a query. The number of queries that an algorithm
makes to the oracle is called its query complexity. Problems where the algorithm is allowed
access to an oracle often bound the number of queries the algorithm may make. In these
problems the query complexity of the algorithm is of interest.

5.5 The Importance of Constant Factors

In this chapter, we have essentially told you not to worry about the constant factors that
the @ notation hides from you. While this is true when you are solving problems in
theory, only attempting to get a good asymptotic time complexity, constant factors can
unfortunately be of large importance when implementing the problems subject to time
limits.

Speeding up a program that has the correct time complexity but still gets time limit
exceeded when submitted to an online judge is half art and half engineering. The first trick
is usually to generate the worst-case test instance. It is often enough to create a test case
where the input matches the input limits of the problem, but sometimes your program
behaves differently depending on how the input looks. In these cases, more complex
reasoning may be required.

Once the worst-case instance has been generated, what remains is improving your
code until you have gained a satisfactory decrease in time usage. When doing this, focus
should be placed on those segments of your code that takes the longest wall-clock time.
Decreasing time usage by 10% in a segment that takes 1 second is clearly a larger win than
decreasing time usage by 100% in a segment that takes 0.01 seconds.

There are many tricks to improving your constant factors, such as:

« using symmetry to perform less calculations,

 precomputing oft-repeated expressions, especially involving trigonometric func-
tions,

o passing very large data structures by reference instead of by copying,

avoiding to repeatedly allocate large amounts of memory, and

using SIMD (single instruction, multiple data) instructions.

75

CHAPTER 5. TIME COMPLEXITY

ADDITIONAL EXERCISES

Exercise 5.8. Prove thatif a(x) = O(b(x)) and b(x) = O(c(x)), then a(x) = O(c(x)),
i.e. asymptotic notation is a transitive property. This means functions can be partially
ordered by their asymptotic growth.

Exercise 5.9. Order the following functions by their asymptotic growth with proof!
x Vx x2 2% ¢

1
x! logx — xlogx «x°
x

Exercises.10. 1. Prove thatif a(x) = O(b(x)) and c(x) = O(d(x)), then
a(x) +c(x) = 0(b(x) +d(x)).
2. Prove that if a(x) = O(b(x)) and ¢(x) = O(d(x)), then
a(x) - c(x) = O(b(x) -d(x)).

NoOTES

Advanced algorithm analysis sometimes uses complicated discrete mathematics, including
number theoretical (as in Chapter 17) or combinatorial (as in Chapter 18) facts. Concrete
Mathematics [29] by Donald Knuth, et al, does a thorough job on both accounts.

An Introduction to the Analysis of Algorithms [17] by Sedgewick and Flajolet has a more
explicit focus on the analysis of algorithms, mainly discussing combinatorial analysis.

The study of various kinds of complexities constitute a research area called computa-
tional complexity theory. Computational Complexity [39] by Papadimitriou is a classical
introduction to computational complexity, although Computational Complexity: A Mod-
ern Approach [2] by Arora and Barak is a more modern textbook, with recent results that
the book by Papadimitriou lack.

While complexity theory is mainly concerned about the limits of specific compu-
tational models on problems that can be solved within those models, what can not be
done by computers is also interesting. This is somewhat out of scope for an algorithmic
problem solving book, but is still of general interest. A book on automata theory (such as
Introduction to Automata Theory, Languages, and Computation [53] by Ullman et al) can
be a good compromise, mixing both foundations of the theory of computation with topics
more applicable to algorithms.

76

CHAPTER 6

Data Structures

Solutions to algorithmic problems consist of two constructs — algorithms and data struc-
tures. Data structures are used to organize the data that algorithms operate on. We
encountered several structures in Chapters 2-3 when learning C++, like the vector.

Many data structures have been developed to handle common operations we may need
to perform on data quickly. In this chapter we discuss some of the basic data structures
used in programming. We chose an approach that is perhaps more theoretic than many
other problem solving texts when it comes to the basic structures. In particular, we
explicitly discuss not only the data structures themselves and their complexities, but also
their implementations. We do this mainly because we believe that their implementations
show useful algorithmic techniques. While you may feel that you can simply skip this
chapter if you are familiar with all the data structures, we advise that you still read through
the sections for those structures that you lack confidence in implementing.

6.1 Dynamic Arrays

The most basic data structure is the fixed-size array. It consists of a fixed size block of
memory and can be viewed as a sequence of N variables of the same type T. It supports
the operations:

o Tarr[] = newT[size]: creating a new array, with a given size.
Complexity: ©(1)

o delete[Jarr: deleting an existing array.
Complexity: ©(1)

o arr[index]: accessing the value in a certain access a value.
Complexity: ©(1)

In Chapter 2 we saw how to create fixed-size arrays the size was known beforehand.
In C++ we can create fixed-size arrays using an expression as size instead. This is done
using the syntax above, for example:

'This complexity is debatable, and highly dependent on what computational model one uses. In practice,
this is roughly “constant time” in most memory management libraries used in C++. In all Java and Python
implementations we tried, it is instead linear in the size.

77

CHAPTER 6. DATA STRUCTURES

int size = 5;

int *arr = new int[sizel;

arr[2] = 5;

cout << arr[2] << endl;

delete[] arr;
In C++, a variable that represents a fixed-size array with an unknown size have an asterisk
in front of its name when it is declared, like int =arr, to distinguish it from a normal array
or variable. Other languages, such as Python or Java, don't have different arrays these

purposes>.
Exercise 6.1. What happens if you try to create an array with a negative size?

The fixed-size array can be used to implement a more useful data structure, the dynamic
array. This is an array that can change size when needed. For example, we may want
to repeatedly insert values in the array without knowing the total number of values
beforehand. This is a very common requirement in programming problems. Specifically,
we want to support two additional operations in addition to the operations supported by
the fixed-size array.

o insert(pos,val): inserting a value in the array at a given position.
Amortized complexity: @ (size — pos)
Worst case complexity: O (size)

« remove(pos): erase a position in an array.

Complexity: O(size — pos)

The complexities we list above are a result of the usual implementation of the dynamic
array. A key consequence of these complexities is that addition and removal of elements
to the end of the dynamic array takes @(1) amortized time.

A dynamic array can be implemented in numerous ways, and underlies the implemen-
tation of essentially every other data structure that we use. A naive implementation of a
dynamic array is using a fixed-size array to store the data and creating a new one with the
correct size whenever we add or remove an element, copying the elements from the old
array to the new array. The complexity for this approach is linear in the size of the array
for every operation that changes the size since we need to copy ®(size) elements during
every update. We need to do better than this.

To achieve the targeted complexity, we can modify this naive approach by not creating
a new array every time we have to change the size of the dynamic array. Whenever we need
to increase the size of the dynamic array, we create a fixed-size array that is larger than we
actually need it to be. For example, if we create a fixed-size array with #» more elements
than our dynamic array needs to store, we don’t have to increase the size of the backing
fixed-size array until we have added n more elements to the dynamic array. This means

*The difference has to do where the array is stored in memory, an aspect C++ lets us control explicitly.

78

N =T N N Y " S

—
o

11

6.1. DYNAMIC ARRAYS

that a dynamic array does not only have a size, the number of elements we currently store
in it, but also a capacity, the number of elements we could store in it. See Figure 6.1 for a
concrete example of what happens when we add elements to a dynamic array that is both
within its capacity and when we exceed it.

size =4 size =5

cap =5 cap =5
size = 6

cap = 10
Figure 6.1: The resizing of an array when it overflows it capacity.
To implement a dynamic array in C++, we could use a structure storing as members

the capacity, size and backing fixed-size array of the dynamic array. An example of how
such a structure could look can be found in Snippet 6.1.

Snippet 6.1: The dynamic array structure

struct DynamicArray {
int capacity;
int size;
int *backing;

DynamicArray() {
capacity = 10;
size = o;
backing = new int[10];

}

~DynamicArray() {
delete[] backing;
}
b

The structure has an extra member function that looks like a constructor with a ~ prepended
to its name. This is a destructor, invoked when the array is destroyed. In it, we delete the
backing array in order to not waste the memory it used.

We are almost ready to add and remove elements to our array now. First, we need to
handle the case where insertion of a new element would result in the size of the dynamic
array would exceed its capacity, that is when size = capacity. Our previous suggestion was

79

(=R - N N

11

CHAPTER 6. DATA STRUCTURES

to allocate a new, bigger one, but just how big? If we always add, say, 10 new elements to
the capacity, we have to perform the copying of the old elements with every 10’th addition.
This still results in additions to the end of the array taking linear time on average. There
is a neat trick that avoids this problem: creating the new backing array with double the
current capacity.

This ensures that the complexity of all copying needed for an array up to some certain
capacity have an amortized complexity of @ (cap). Assume that we have just increased the
capacity of our array to cap, which required us to copy %2
increase will have happened at around capacity % and took time %. The one before that
occurred at capacity % and so on.

We can sum up all of this copying:

elements. Then, the previous

cap | cap

+---<ca
) P

using the formula for the sum of a geometric series.

Since each copy is assumed to take @(1) time, the total time to create this array was
O(cap). As < < size < cap, this is also O(size), meaning that adding size elements to the
end of the dynamic array takes amortized ®(size) time.

When implementing this in code, we use a function that takes as argument the capacity
we require the dynamic array to have and ensures that the backing array have at least this
size, possibly by creating a new one double in size until it is sufficiently large. Example
code for this can be found in Snippet 6.2.

Snippet 6.2: Ensuring that a dynamic array have sufficient capacity

void ensureCapacity(int need) {
while (capacity < need) {
int *newBacking = new int[2 * capacity];
for (int i = 0; i < size; i++)
newBacking[i] = backing[i];
delete[] backing;
backing = newBacking;
capacity = 2;

With this method in hand, insertion and removal of elements is actually pretty simple.
Whenever we remove an element, we simply need to move the elements coming after it in
the dynamic array forward one step. See Figure 6.2 for an illustration of an element being
removed.

When adding an element, we reverse this process by moving the elements coming after
the position we wish to insert a new element at one step towards the back. An example of
this is shown in Figure 6.3.

80

6.2. STACKS

size =6 size =6

ofelefafefol T[] [of

X

(*3‘(—4‘&5 ‘ ‘ ‘

cap = 10 cap = 10
size =5

cap = 10
Figure 6.2: The removal of the element 2 at index 2.

size =5 size =5

ol fofels[T[T | [olobododosf][]
cap = 10 cap = 10
size =6
Lol fefelafs] []|
cap = 10

Figure 6.3: The insertion of the element 2 into index 2.

Exercise 6.2. Implement insertion and removal of elements in a dynamic array.

Dynamic arrays are called vectors in C++ (Section 3.1.2). They have the same com-
plexities as the one described at the beginning of this section.

Exercise 6.3. How can any element be removed in ©(1) if we ignore the ordering of values
in the array?

6.2 Stacks

The stack is a data structure that contains an ordered lists of values and supports the
following operations:

o push(val): inserting a value at the top of the stack.
Amortized complexity: ©(1)

o pop(): remove the value at the top of the stack.
Complexity: ©(1)

« top(): get the value at the top of the stack.
Complexity: ©(1)

81

CHAPTER 6. DATA STRUCTURES

The structure is easily implemented with the above time complexities using a dynamic
vector. After all, the vector supports exactly the same operations that a stack requires. In
C++, the stack is called a stack. We did not mention it in the STL chapter since it can be
so easily replaced by the vector.

Exercise 6.4. Implement a stack using a dynamic vector.

6.3 Queues

The queue is, like the vector and the stack, an ordered list of values. Instead of removing and
getting values from the end like the stack, it gets the value from the front. The supported
operations are thus:

o push(val): inserting a value at the end of the queue.
Amortized complexity: ©(1)

o pop(): remove the value at the front of the queue.
Amortized complexity: (1)

« front(): get the value at the front of the queue.
Complexity: ©(1)

As previously seen, C++ has an implementation of the queue called queue (Section 3.1.4).

Implementing a queue can also be done using a vector. After all, the operations and
complexities are nearly the same; only removing the value of the front is wrong. To fix this,
one can simply hold a pointer to what the front of the queue is in the vector. Removing
the front element is then equivalent to moving the pointer forward one step. To see this
how this would work in practice, see an example push and pop operation in Figure 6.4.

size =4)
size =5

front =1 front =1
size = 4

front =2

Figure 6.4: Pushing and popping elements in a queue

Exercise 6.5. Implement a queue using a vector.

82

6.4. PRIORITY QUEUES

Exercise 6.6. A queue can be implemented using two stacks in amortized constant time
per operation. How?

Exercise 6.7. A stack can be implemented using two queues in amortized linear time per
operation. How?

Exercise 6.8. This naive suggestion of a queue implementation suffers a slight problem.
After pushing and poping k elements, the backing dynamic array has size at least k even
though none of its elements are in use, thus occupying memory unnecessarily. Devise a
strategy that ensures the backing dynamic array never uses more than cn elements (where
n is the current size of the queue) for some constant ¢ but maintaining the amortized
complexity.

6.4 Priority Queues

Now; let us look at our first more complex data structure. The priority queue is an
unordered bag of elements, from which we can get and remove the largest one quickly. It
supports the operations

o push(val): inserting a value into the heap.
Complexity: O(logn)

« pop(): remove the largest value in the heap.
Complexity: O(logn)

o getMax(): get the largest value in the heap.
Complexity: ©(1)

This is implemented as priority_queue in C++ (Section 3.1.5), although one often
instead use a set which not only supports the same operations with the same complexities,
but also supports erasing elements.

The backing implementation of the priority queue structure we study is called a heap.
The heap itself will be implemented using another data structure called a binary tree, which
we need to describe first.

Binary Trees

A binary tree is a data structure where there one element is designated the root of the tree,
and each element is given either o, 1 or 2 children. All elements except the root is a child
of another element. In Figure 6.5a, you can see an example of a binary tree.

We call a binary tree complete if every level of the tree is completely filled, except
possibly the bottom one. If the bottom level is not filled, all elements in it need to be as far
as possible to the left. In a complete binary tree, we can order every element as we do in
Figure 6.5b, i.e. from the top down, left to right at each layer.

The beauty of this numbering is that we can use it to store a binary tree in a vector.
Since each element is given a number, we can map the number of each element into a

83

CHAPTER 6. DATA STRUCTURES

(a) Anon-complete binary tree (b) A complete binary tree,
with 3 levels. also with 3 levels.

Figure 6.5: Examples of binary trees.

position in a vector. The n elements in a complete binary tree then occupy all the indices
[1...#n]. An benefit of this numbering is that it is easy to compute the number of the
parent, left child and right child of an element. If an element has number i, the parent has
number | £ |, the left child has number 2i and the right child has number 2i + 1.

Exercise 6.9. Prove that the above properties of the numbering of a complete binary tree
hold.

A heap is implemented as a complete binary tree, which we in turn implement by a
backing vector in the manner described. In the implementation, we use the following
convenience functions:

1 function PARENT(7) return i/2
2: function LEFT(i) return 2i

3. function R1GHT(7) return 2i +1

Note: if you use a vector to represent a complete binary tree in this manner it needs
to have the size n + 1 where n is the number of elements, since the tree numbering is
l-indexed and the vector is 0-indexed!

Heaps

A heap is a special kind of complete binary tree. More specifically, it should always satisfy
the following property: an element always has a higher value than its immediate children.
Note that this condition acts transitively, which means that an element also has a higher
value than its grand-children, and their children and so on. In particular, a consequence
of this property is that the root of the three is always be the largest value in the heap. As it
happens, this property is exactly what we need to quickly get the maximum value of the
heap. You can see an example of a heap in Figure 6.6

We thus start our description of a heap somewhat backwards, with the function needed
to get the largest element:

1. procedure GET-Max(tree) return tree[1]

84

N

—

DI A]

6.4. PRIORITY QUEUES

Figure 6.6: A heap of the elements 1,4,4,5,7,10.

The complicated operations on the heap is to add and remove elements while ensuring
that the heap keeps satisfying this property. We start with the simplest one, adding a new
element. Since we represent the heap using a vector, adding a new element to a heap
can be done by appending the element to the vector. In this manner, we ensure that the
underlying binary tree is still complete. However, it may be that the value we added is now
larger than its parent. If this is the case, we can fix the violation of the heap property by
swapping the value with its parent. This does not guarantee that the value still is not larger
than its parent. In fact, if the newly added element is largest in the heap, it would have to
be repeatedly swapped up to the top! This procedure, of moving the newly added element
up in the tree until it is no longer larger than its parent (or it becomes the root) is called
bubbling up:

: procedure BuBBLE-UP(idx, vector tree)

while idx >1do
if tree[idx] > tree[Parent(idx)] then
Swap tree[idx] and tree[Parent(idx)|
idx « Parent(idx)
else
break

Pushing a value now reduces to appending it to the tree and bubbling it up. You can
see this procedure in action in Figure 6.7.

: procedure PusH(x, tree)

tree.append(x)
Bubble — Up(tree.size() — 1, tree)

Removing a value is slightly harder. First of, the tree will no longer be a binary tree
— it is missing its root! To rectify this, we can take the last element of the tree and put it
as root instead. This keeps the binary tree complete, but may cause it to violate the heap
property since our new root may be smaller than either or both of its children.

The solution to this problem is similar to that of adding an element. Instead of bubbling
up, we bubble it down by repeatedly swapping it with one of its children until it no longer

85

CHAPTER 6. DATA STRUCTURES

Figure 6.7: Adding a new value and bubbling it up.

is greater than any of its children. The only question mark is which of its children we
should bubble down to, in case the element is smaller than both of its children. The answer
is clearly the largest of the two children. If we take the smaller of the two children, we
will again violate the heap property. Just as with pushing, popping a value is done by a
combination of removing the value and fixing the heap to satisfy the heap property again.

: procedure REMOVE-MAX(x, vector tree)

10:

11:

12:
13:
14:
15:
16:

tree[1] < tree[tree.size() — 1]
remove the last element of tree
Bubble — Down(1, tree)

: procedure BUBBLE-DowN(idx, tree)

while true do

largest < idx

if Left(idx) < tree.size() and tree[Left(idx)] > tree[largest] then
largest < Left(idx)

if Right(idx) < tree.size() and tree[Right(idx)] > tree[largest] then
largest < Right(idx)

if largest = idx then
break

else
Swap tree[idx] and tree[largest]
idx < largest

A final piece of our analysis is missing. It is not yet proven that the time complexity

of adding and removing elements are indeed O(log n). To do this, we first need to state

a basic fact of complete binary trees: their height is at most log, n. This is easily proven
by contradiction. Assume that the height of the tree is at least log, # + 1. We claim that

86

6.5. BITSETS

any such tree must have strictly more than n elements. Since all but the last layers of the
tree must be complete, it must have at least 1+ 2 + --- + 205" = 2108 "+1 _] elements. But
2198741 _1 = 251 — 1> n for positive 7, so the tree has more than 1 elements. This means
that a tree with n elements cannot have more than height log, #.

The next piece of the puzzle is analyzing just how many iterations the loops in the
bubble up and bubble down procedures can perform. In the bubble up procedure, we
keep an index to an element that, for every iteration, moves up in the tree. This can only
happen as many times as there are levels in the tree. Similarly, the bubble down procedure
tracks an element that moves down in the tree for every iteration. Again, this is bounded
by the number of levels in the tree. We are forced to conclude that since the complexity
of each iteration is @ (1) as they only perform simple operations, the complexities of the
procedures as a whole are O(logn).

Problem 6.10.
Binary Heap heap

Exercise 6.11. Prove that adding an element using Push never violates the heap property.

Exercise 6.12. To construct a heap with n elements by repeatedly adding one at a time
takes O(nlogn) time, since the add function takes O(log#) time in the worst case. One
can also construct it in @(#) time in the following way: arbitrarily construct a complete
binary tree with all the n elements, and then call Bubble — Down on each of the elements
in reverse order n,n —1,...,2,1. Prove that this correctly constructs a heap, and that is
takes ®(n) time.

6.5 Bitsets

We move on to the simplest data structure of the chapter. The bitset can be viewed as a
specialization of a static-length array for the case where the values stored are booleans, i.e.
supporting only the operations of setting and getting values in the array.

The idea behind it is simple. Booleans are essentially values 0 (false) or 1 (true), i.e.
equivalent to a binary digit. Another data type also consists of binary digits — integers.
In the chapter on programming, we said that the memory of a computer is just a long
sequence of binary digits. Any interpretation of what these digits actually mean is up to
us. For example, your typical 64-bit integers could just as well represent an array of 64
booleans, indexed from 0 to 63. That is the bit part.

An array of booleans of size N can also be interpreted as a subset of the integers
{0,1,..., N-1}. If the i’th value of the array is true, we say that i is in the subset, otherwise
it is not. This is the set part. An example of this equivalence between integers and subsets
is visualized in Figure 6.8.

Interpreting N-bit integers as subsets of {0,1,..., N — 1} is surprisingly useful. It
allows us to easily pass subsets as parameters to functions or use them as indexes into a
vector rather than using a map.

87

https://heap.link/problem/heap

CHAPTER 6. DATA STRUCTURES

7 6

t
e
w
N}
—_
o

90=[0 1|01 |1|0]| 1|0 |={L346}

Figure 6.8: The equivalence between 90 and the set of elements {1,3,4,6}.

To operate on a bitset, we use bitwise operators in C++. To construct the representation
of the set {i}, the expression 1 << i is used. This operator is called the left-shift operator.
It works by taking the binary representation of the left operand and moves it i steps to the
left, adding i zeroes to the right. Since the binary representation of 1 is 1, the expression
results in a binary number with an 1in its i’th place, which is the correct representation of
the set.

To take the union of two bitsets x and y, we use the bitwise or operator: x | y. This
operator takes the two integers and gives us a new one, with a 1 as the #’th digit if either
x or y had a1 as their i’th digit. Similarly, the bitwise and operator x & y computes the
intersection of the two sets. This allows us to check for set membership of i in the bitset x
using the expression x & (1 << i) which is 0 if i was not a member of the set,and 1 << i
otherwise. The symmetric difference of two sets is computed with the bitwise exclusive
or operator (often called “xor”), x * y. An element is in the symmetric difference if it
was a member of exactly one of x and y. Thus, one can toggle the presence of an element
i in a bitset using x * (1 << i). Finally, the bitwise negation operator ~x computes the
complement of a set.

There are also a number of built-in functions that are of use. To compute the size of
a bitset, the most common compilers support the macro __buitltin_popcount(x) which
returns the number of 1 digits in x. To get the index of the lowest set element, we can count
the number of trailing zeroes in the bitset using __builtin_ctz(v).

There are several neat tricks involving bitsets. Some worth mentioning are:

« computing the representation of {0,1,..., N — 1} with the expression (1 << N) - 1,
« removing the lowest-numbered element of the set with x & (x - 1),

« retrieve the lowest-numbered element using x & -x, and

« iterating through all (non-empty) subsets of a bitset x using the loop

for (int sub = x; sub != @; sub = (sub - 1) & x)

Exercise 6.13. Given a bitset, use bitwise operators to compute the next higher bitset with
the same number of elements.

6.6 Hash Tables

In Section 3.1.6, we looked at a data structure called map, which stored a mapping from
a set of keys to their corresponding values. The underlying implementation of this data

88

6.6. HAsH TABLES

structure in STL is called a self-balancing tree, a quite difficult data structure. If one is
willing to forego having the structure being sorted by keys, a hash table can be used instead.
Hash tables are an easier implementation of the map, and can, depending on read and
write patterns, be faster than the self-balancing tree implementation. It exists in STL as
Well, called unordered_map.

The operations the hash table supports are:

o set(x,y): set the value of key x to y.
Complexity: expected ©(1)
o get(x): return the value of key x.
Complexity: expected ©(1)
o erase(x): remove the key x.
Complexity: expected ©(1)
o contains(x): returns whether the table contains the key x or not.
Complexity: expected ©(1)

The main idea behind supporting these operations quickly is essentially the same as
that of the dynamic array. Assume that the set of all possible keys, the universe, were the
integers 0,1, ..., N for some fixed N. If so, we could easily implement the above operations
by storing the values in a dynamic array of this size. What do we do if this is not the case?

We apply the concept of hashing. Imagine that your universe consists of all integers
that fits in an int. A dynamic array can not be used to store a hash table of that size (2%?) -
at least not in competitions. Instead, the goal of hashing is to shrink this huge universe
into a small one that we could store in an array. For example, we could take the last K
digits of the key for some small K (i.e the remainder when dividing by 10¥) and use it as
the index into an array for the value of that key. There are only 10X such keys, which for
small K is a universe that can fit in an array.

Given such a mapping, we can store the key and value as a pair on the corresponding
index in the array. This is illustrated for K = 1in Figure 6.9.

0 1 2 3 4) 6 7 8 9

' ' ' \

(50, A) (2002, B) (144, C) (17, D)

Figure 6.9: An example of where the hash table would store the values of a few keys when K = 1.

Transformations that take an arbitrarily large value (any integer) and maps it into a set
of constant size, are called hash functions®.

3You might have heard about a version of this often used in cryptography, the cryptographic hash function,
which aims to provide stronger guarantees than we care about.

89

CHAPTER 6. DATA STRUCTURES

Unfortunately, we are bitten by one of the fundamental limitations of mathematics -
if a function maps a set to a smaller one, at least two values map to the same value. This
is called a collision - two keys have the same index in the backing array. Resolving this
situation is actually straightforward. Instead of using the table to store a single key-value
pair, we can store a dynamic array of key-value pairs*.

01234567819
Y v Y Y
(50, A) (2002, B) (144, C) (17, D)

v \

(270, E) (27, F)

Figure 6.10: When several keys with the same hash value are stored, we save all pairs in a sub-array.

This complicates an implementation only slightly. To retrieve a value from the hash
table, we look up the correct index of the array backing the table and check all key-value
pairs stored in the array at that index. If we find a pair with the correct key, we return its
associated value.

Setting the value of a key becomes a two-step process. First, we need to check the
correct sub-array to see if it already contains a key-value pair with the same key. If it does,
we update the value of the pair to the new value. If it does not, we insert the new key and
value as a pair in that list.

We are not done yet. If the observant reader attempts to reason about the time com-
plexity of the above solution, they would notice a problem. When all the keys inserted
into the table have the same hash value - in the case of our simple function, the same
last K digits — they map into the same position in the backing array. Searching through
the sub-array to determine if it already contains the key becomes a linear time operation
as our hash table degrades into a single array. Furthermore, if we pick a K that is much
smaller than the number of keys, we must scan through very large arrays. For example,
when K = 1and we have 10° keys, every operation needs to scan through on average 10°
values. This leaves us with two issues to resolve — how do we choose a reasonable hash
function, and how big must our hash table be?

As for the second question, the goal is to keep the size a multiple of the number of keys.
When the number of keys grows too large for the table, the size is increased and the hash
of all keys recomputed with regards to the new table size. Typically, one would double
the size of the hash table when it grows too dense, corresponding to how dynamic arrays
were implemented. This keeps the amortized time complexity constant over resizing. As

“#Traditionally, most introductions to the hash table use a data structure called a linked list to pairs that
collide. We elect not to, since it’s mostly a question about real-world performance, and expect you to use the
implementation from STL if you use C++.

90

6.6. HAsH TABLES

a bonus, if one starts with a table size that is a power of two, doubling it keeps the size a
power of two. In the remainder of the section, we assume the size is equal to 2 at the
time of hashing.

The first question depends on the context. For the sake of programming problems,
one can usually take the upper N bits of Ax as the hash, where A is a large constant odd
constant, i.e:

(A * x) > (64 - N)

If Ais not odd, Ax in binary just has a few extra zeroes at the end, reducing the useful bits.

Exercise 6.14. What happens if one takes the lower N bits of the product Ax as the hash
instead?

When we now move on to trying to compute the complexity of a hash table, we assume
that a randomly chosen key has the same probability of being mapped to any of the possible
hash values. By the resizing trick above, we can also assume that the table size is always
within a constant of the number of keys.

Assume that K operations are performed on a table of some size M. The complexity of
the i’th operation is exactly that of the length of the sub-array to which the key involved
in the operation would map. The expected complexity of the operation is then equal to
the expected length of the sub-array. Let a; be 0 if the j’th operation inserted a key into
this sub-array, and 1 otherwise (for 1 < j < i). The expected length of the sub-array is then
E[Z;:I aj] = Z;:I [E[a;] by the linearity of expectation. By the assumption that keys map
randomly into hash values, E[a;] < 5: so that the sum above is bounded by - < +-. Since
% < ¢ for some constant ¢ by the dynamlc resizing, the expected length is also bounded
by a constant, meaning the complexity is as well.

Note that this analysis says nothing about the worst-case complexity of an operation
(which can be linear of all keys map to the same hash value) or the expected length of the
longest sub-array (which is

log log K)

Universal Hashing

Certain competition forms include a stage where contestants may challenge the solutions
of others for correctness, by providing a test case they believe the solution would fail. In
this case, the hash function above is not good enough. Another contestant can easily
generate values of x that all map to the same hash value, by generating a large number of
values and evaluating your hash function on them, picking a large set of collisions from
them. This also applies when using unordered_map from STL’. To resolve this, one picks a
hash function from a family of functions at random at every invocation of your program,
a concept called universal hashing. In practice, the randomness tends come from reading
the current time at a sufficiently granular level to be hard to predict.

5Using map is fine however, since it is not backed by a hash table.

91

CHAPTER 6. DATA STRUCTURES

The hash function we will look at is again Ax (as an unsigned 64-bit integer), but this
time A is a random (odd) 64-bit integer. We claim that taking the top K bits of Ax makes
a good hash function from 64-bit integers to K-bit integers, i.e.

Ax
hx) = | s |

To prove we are not making you use a weak hash for when you compete against the
author, we provide a somewhat technical and uninteresting proof that uses some of the
simpler number theoretical tools in Chapter 17.

Theorem 6.4
For any two fixed 64-bit integers x, y, their hashes h(x) and h(y) are equal with
probability 2% over all choices of the hash function parameter A).

Proof. This proof uses some basic number theoretic facts - if you are not familiar with
modular inverses, you might need to work through Chapter 17.

Assume that h(x) = h(y). This means that the top K bits of Ax and Ay are equal.
Thus, the top K bits of Ax — Ay = A(x — y) must either be all zeroes (if Ax > Ay) or all
ones (if Ax < Ay, causing a carry bit from the top K bits).

Now, we introduce the following variables. Let z be the odd part of x — y such that
x — y = 22 for some i. Also, let B be the top 63 bits of A so that A = 2B +1. Since A is a
uniformly random odd 64-bit integer, B is uniformly random. We can now perform the
rewrite A(x — y) = (2B+1)(x — y) = (2B +1)z2" = Bz2"*! + 22, Since B is uniformly
random over 2% and z is 0dd, Bz mod 2 is uniformly random over 2% (this follows
from the fact that z as an odd number is relatively prime with 2%). Thus, the integer
A(x - y) = Bz2"*! + 22/ is uniformly random in its top 63 — i bits and contains only
zeroes in its lower i bits.

Note that Ax = Ay + A(x — y). Since A(x — y) has zeroes in the lower i bits and a 1
in the #’th bit, the i’th bit of Ay will change when adding A(x — y) to it, so that it will
differ from the i’th bit in Ax. By assumption the top K bits of Ax and Ay, are equal,
which thus forces i < 64 — K.

This means that the top 63 — i > 63 — (64 — K) = K bits are uniformly random. A
hash collision could only occur when they were all one or all zero, which happens with
probability 2% O

Exercise 6.15. Is it a problem that the hash has pairwise collisions with probability 2%(
rather than 3¢ with regard to hash table complexity?

ADDITIONAL EXERCISES

Exercise 6.16. Assume that you want to implement shrinking of a dynamic array (or a
hash table) where many elements were deleted so that the capacity is unnecessarily large.

92

]

S A]

6.6. HAsH TABLES

This will be implemented by calling a particular function after any removal, to see if the
array should be shrunk. What is the problem with the following implementation?

: procedure SHRINKVECTOR(V)

while 2 - V.capacity > V .size do
arr < new T[V.capacity/2]
copy the elements of V.backing to arr
V.backing < arr
V.capacity < V .capacity/2

NoOTES

For a more rigorous treatment of the basic data structures, we again refer to Introduction
to Algorithms [11]. In particular, it goes through other techniques regarding hash tables
more thoroughly, something we skipped since it is the hashing technique and general
knowledge of the structure we deemed important here — an efficient implementation is
something your language standard library will provide.

If you want to dive deeper into proper implementations of the algorithms in C++,
Data Structures and Algorithm Analysis in C++ [57] covers what we brought up in this
chapter and a bit more.

93

CHAPTER 6. DATA STRUCTURES

94

CHAPTER 7

Recursion

This chapter introduces the first proper algorithmic principle in the book, that of recursion.
The first four chapters of the next part - brute force, greedy algorithms, dynamic program-
ming and divide and conquer - are all based on this concept. Recursion is perhaps the
first truly creatively tricky (rather than technically difficult) technique faced by the fresh
programmer, so we have chosen to dedicate an entire chapter for a primer on the topic.
The remainder of this book, and computer science as a whole, strongly depends on a
solid understanding of recursion. You are therefore urged to read it more carefully than
the previous chapters. Even better; before you read it, make sure to have already read it!"

7.1 Recursive Definitions

The first example of recursion that most people become acquainted with is the definition of
a famous mathematical sequence, the Fibonacci numbers. The infinite sequence starts with
the numbers 0, 1,1, 2, 3,5, 8,13, Except for the first two, each number is computed
by taking the sum of the two previous ones. A formal mathematical definition of the i’th
Fibonacci number F; can look like this:

0 ifi=0
Fi={1 ifi=1 (7.1)
F, 1+F;, for i > 2.

By the definition, we would have e.g. Fg = F5 + F4 =5+ 3 = 8, which is true.

Exercise 7.1. Use the definition to compute the 10 first Fibonacci numbers.

This is a so-called called recursive definition, meaning that it refers back to itself - the
definition of a Fibonacci number depends on the definition of (earlier) Fibonacci numbers.
A program to directly implement the recursion looks very similar to the mathematical
definition Eq. 7.1.

'This is a recursion joke that sadly isn’t funny even when you know recursion.

95

R

CHAPTER 7. RECURSION

Snippet 7.1: Computing Fibonacci Numbers

int F(int n) {
if (n == 0) return o;
if (n == 1) return 1;
return F(n - 1) + F(n - 2);

Note that this function, just like the recursive definition, computes its result F(n) by
calling itself to compute the (smaller) Fibonacci numbers F(n — 1) and F(n - 2). A
knee-jerk reaction might be that such a function could never finish. After all, in order
to compute a single Fibonacci number, the function calls itself, not just one, but two
times! The solution is one of the key ideas of recursion, namely that there are base cases
where the self-referential - recursive - computation eventually bottoms out, so that the
definition does not refer back to itself forever and ever. In the case of Fibonacci, once you
try computing F, or Fy, the definition gives us the values immediately without having to
apply the recursive case. One can visualize the computation as in Figure 7.1.

F(5) 3 F(4) > F(3) » F(2) > F(1) 54— 34— 2 & 1 +— 1
1 N N N N ‘\ \ ‘\
F(3) F2) F1) F(0)

F(2) \Fm x
\ o -
F(1) F(0)
F(O) 0
(a) The recursive calls. (b) The return values.

Figure 7.: A visualization of the computation of F(5)

Another application of the recursive principle would be computing a” where 7 is non-
negative integer. Since a” is defined as the product of a # times, we can base a recursion
around first computing a”~! and then multiplying it with a:

" 1 ifn=0
a’ = (7.2)

a-a"! forn>L

The implementation is similarly straightforward.

96

AW N =

B S

7.1. RECURSIVE DEFINITIONS

Snippet 7.2: Recursive Exponentiation

int power(int a, int n) {
if (n == 0) return 1;
return a * power(a, n - 1);

Even though recursive definitions are the simplest examples of recursion, they often
come up in practice.

Problems traditionally programmed using loops can also be solved by formulating
them recursively®. Consider the problem of summing an array of integers. Normally,
youd use loops for such a task. However, there is nothing preventing you from using the
following recursive definition. Let A = (a, ..., a,-1) be an array of integers. If S(k) is
the sum of the first k elements of A, we have that

S(k) 0 ifk=0 (73)
= 73
ax_1 +S(k-1) otherwise.

To compute the sum of the entire array, we call S(#). Even though we now have to deal
with a vector, the implementation is similar:

Snippet 7.3: Recursive Summing

// Invoked with sum(A, A.size())

int sum(const vector<int>& A, int k) {
if (k == o) return o;
return Alk - 1] + sum(A, k - 1);

Equation 7.3 is a recursive definition too: it reduces the problem of summing the
entire array A to summing a smaller part of A. This is the essence of recursion - it was
the common factor in all three examples. A recursive definition is meant to express the
solution to a problem in terms of other instances of the same problem. The goal is that the
new instances should be smaller than the first, in order to make progress on the problem.

Exercise 7.2. Write recursive functions to compute:

« the product of all integers in an array,
o the largest element in an array, and

o the greatest sum of two consecutive elements in an array.

*In fact, some programming languages do not have loops. Instead, you must formulate them recursively.

97

CHAPTER 7. RECURSION

72 'The Time Complexity of Recursive Functions

How fast is a recursive program? It is not as easy to compute as most of the algorithms we
have seen so far. The work is distributed over several recursive calls, and we need to sum
all of it up.

In all problems in this chapter, the time complexity of the recursive function except
the recursive calls themselves is always the same. This is true of all of our examples so far -
they only performed constant-time work plus some recursive calls. For functions where
this is true the time complexity boils down to two factors: the number of function calls
in total, and the time complexity of a single function call (excluding the recursive calls).
Summing all the work is as simple as taking the product of these two things.

In the example of summing a vector of size m, there are a total of m +1 = ®(m)
function calls. One call is made for each element, and one final call for the base case of
the recursion. A single call performs only constant-time operations, so it has complexity
©(1). The time complexity is therefore ®(m) - ©(1) = @(m).

The number of function calls made in total can be considerably harder to compute,
such as for the Fibonacci recursion.

Exercise 7.3. Write a program that uses the recursive function to compute Fibonacci
numbers. Try computing all the Fibonacci numbers starting from F;o and upwards until
the execution takes over 30 seconds. Take note of how long your program takes. What
complexity does the function seem to have?

From the above exercise, it is clear that the running time is not a linear function. In
fact, it turns out to be exponential. A simple lower bound is 2% function calls, which we
can prove by induction. Let T (1) be the time taken to compute F,,. If T(n) > 2% for all n
up to some n’ —1and n =1, then

T(n")>T(n' -1)+T(n'-2)

n -1 n'—2

=212 422

n'-2 n'—2

>2 2 +2 2

n'-2

:21+ 2

’

N

=2

using the fact that T(n) = T(n - 1) + T(n - 2) + ©(1), so the statement holds for n = n’
too. This lower bound is quite lax though - we can do better.

The above bound had the form of a polynomial: (22)". If we substitute x = 27, the
bound worked out because the inequality x"™! + x"~% > x" held. To find the best possible
lower bound of this form, we should instead choose the greatest possible x such that

n-1

x" 1+ x""% > x" is true. First divide the inequality by x" 2, resulting in x + 1 > x2, or
x? = x —1 < 0. We then solve a simple quadratic equation and find # <x < %ﬁ,

98

7.3. CHOICE

n
attaining the slightly stronger lower bound T'(n) > “#@ ~ 1.618". This is not quite
rigorous: we ignore the term (1) in our computations. When finding a lower bound, it’s
fine to throw away things from the recurrence since that only gives us a weaker bound.

When proving the corresponding upper bound we need to take it into account though.

Exercise 7.4. Prove that T(n) = O(1.62").

7.3 Choice

After reading the past examples, you may feel dissatisfied with recursion. Most of the
problems we applied the recursive principle too is simplest solved by a basic for loop.
While all recursion is based on reducing a problem instance to a smaller instance of
the same problem, it perhaps makes more sense in other settings. This time, we look
at problems involving choices of different kinds. Hopefully they convince you that the
recursive principle can provide great power as a mode of thinking - even if using a recursive
function implementation may still seem unnecessary as compared to a single for loop.

Stairs
Tasha the kitty loves playing with the stairs at home while her caretakers are at work. Her favorite
game involves jumping up to the top of the stairs by repeatedly skipping either 1 or 2 stairs at a time.
She doesn't like jumping on the exact same sequence of stairs during two different climbs.

Figure 7.2: One way Tasha could climb a staircase of 6 stairs.

If the staircase has 1 < n < 20 steps (including the top), in how many different ways can she
climb the stairs?

Solution. With such a small n, computing this efficiently is not the main issue; computing
it at all is. The trick lies in formulating Tasha’s jumping up the stairs as a sequence of
choices. After Tasha has jumped k steps, she has two choices - should her next jump be
up a single stair to k + 1, or two stairs to k + 22 When dealt such a problem, always ask
yourself: what was Tasha’s last choice, just before she climbed up to the top of the stairs?
Consider these two options in Figure 7.3.

If there are a total of n stairs and Tasha’s last jump was a single step, then she came
from step n — 1. Similarly, if she took two steps, she came from step n — 2. These two

99

CHAPTER 7. RECURSION

Figure 7.3: The two jumps leading to the top.

options are exhaustive — there is no other way she could have come to step n. They are
also exclusive - we assumed that this was Tasha’s last jump, so there is no overlap between
these possibilities. This means that the number of ways Tasha can get to the »’th step must
be equal to the number of ways she could get to the (n — 1)’st step, plus the number of
ways she could get to the (# — 2)’nd step.

A recursive procedure based on this insight is then straightforward:

procedure STAIRS(1)
if n = 0 then
return 1
if n = 1then
return 1

return Stairs(n — 1) + Stairs(n — 2)

Note the base cases we added, for the case of an empty staircase or a single stair. The time
complexity of the solution is the same as that for Fibonacci, since the recursion is the
same. O

We solve another problem from an early Swedish high school qualifier in the same
way.

The Plank - theplank
By Hakan Stromberg. Swedish Olympiad in Informatics, School Qualifiers 2001.
You want to construct a long plank using smaller wooden pieces. There are three kinds of pieces of
lengths 1, 2 and 3 meters respectively, each which you have an unlimited number of. You can glue
together several of the smaller pieces to create a longer plank.

100

https://heap.link/problem/theplank

[

AN I

7.3. CHOICE

Figure 7.4: There are 7 ways to glue together a 4 meter plank.

If the plank should have length 7 (1 < n < 24) meters, in how many different ways can you glue
pieces together to get a plank of the right length?

Solution. The idea here is the same as in the Stairs problem. To compute the number of
all possible plank constructions, we need a recursive definition that reduces the problem
into counting the number of ways one can build some smaller planks. For any given plank
of length #, the rightmost piece of the plank has size either 1, 2 or 3. This means that the
number of ways in which we can construct the plank is equal to the number of ways in
which planks of sizes n — 1, n — 2 and n — 3 can be glued together. While this isn’t easier
to compute directly, we can apply the same reduction recursively to these smaller planks,
ending up with a very similar solution:

: procedure PLANKWAYS(n)

if n < 0 then
return 0
if n = 0 then
return 1
return PlankWays(n — 1) + PlankWays(# — 2) + PlankWays(n — 3)

Again, we had to add a few base cases to give the recursion somewhere to stop. The two
base cases we picked here may be slightly less intuitive. We say that there is a single way to
construct a plank of length 0, and no ways to construct negative-length planks. O

Exercise 7.5. Prove that the time complexity of PlankWays algorithm has a lower bound
of 2(1.83") and an upper bound O(1.84™).

These two problems are much alike, and many other recursive problems follow this
template:

o formulate the problem as a sequence of choices,

o look at what the last choice was, and

« find out if “backtracking” along that choice reduces the problem to smaller instances
of the same problem.

101

CHAPTER 7. RECURSION

Now that we have warmed up, we are going to look at a slightly harder recursive
problem, where it is less obvious to figure out how to reduce the problem to a smaller one.

Dominoes
In how many ways can a 2 x n (1 < n < 20) grid be tiled by n dominoes, i.e. bricks of size 1 x 2 or
2 x 1 such that no dominoes overlap?

Figure 7.5: An example tiling of a 2 x 7 grid.

Solution. Looking at the example tiling in Figure 7.5 might help us. Let us denote the
number of tilings of a 2 x n grid with S(n). In general, a recursion would somehow
reduce the problem of computing S(#) to computing smaller values of this function. By
considering the rightmost domino of the example, a solution idea should form. If the
rightmost tile is placed vertically, the remaining grid has size 2 x (n — 1), so there are
S(n —1) such tilings. If it is not placed vertically, the two rightmost squares must instead
be occupied by two horizontal tiles. In this case, the remaining grid would have size
2 x (n—2), meaning there would be S(n —2) ways to complete the remainder of the tiling
(see Figure 7.6).

n—2

n—1
Figure 7.6: The two resulting subproblems after covering the rightmost column.
Since these are the only two options, the total number of tilings must be S(n) =
S(n—-1) + S(n - 2), and thus we get our recursive solution. Here too we got the same

recursion as the one for Fibonacci, with the same time complexity. O

102

7.4. MULTIDIMENSIONAL RECURSION

Exercise 7.6. 1. Write a recursion to compute the number of strings of length n con-
sisting of only letters A and B, with no two A’s next to each other.

2. Write a recursion to compute the number of subsets of {1,2, ..., n}, where at least
one of i, i + 1 must be in the subset for all 1 < i < n.

In the chapter on brute force we revisit this way of thinking as we use recursion to
solve optimization problems rather than simply counting ways.

7.4 Multidimensional Recursion

So far, every recursive solution we produced were about a single sequence of numbers -
the input was an integer #, and we computed the n’th value of the sequence through a
recursive definition.

There are of course other recursions that come in all shapes and sizes. Recursing on
more advanced problems can sometimes give us several recursive sequences that refer to
smaller values of each other.

Varied Amusements - variedamusements
Marika and Lisa loves going to amusement parks. This time, they have their eyes set on a park with
lots of exciting rides of three different types: tilt-a-whirls, roller coasters and drop towers. There are
1 < a <10 different tilt-a-whirls, 1 < b < 10 roller coasters and 1 < ¢ < 10 drop towers. They want to
ride 1 < n < 10 different rides in sequence, but never two rides of the same type in a row. In how
many ways can they choose such sequences of n rides?

Solution. On the surface, the problem is a prime candidate for the choice-strategy. There
are n choices — what ride to go on each time. However, once we choose the last ride the
girls took, we are faced with a problem. If we chose a roller coaster, the first n —1 rides may
not end with a roller coaster. This is not a smaller instance of the same problem, where the
last ride could be anyone we wanted. Instead, we get three different problems depending
on the type of ride we choose as the last one: how many sequences of n — 1 rides are there
that does not end with A) a tilt-a-whirl? B) a roller coaster? or C) a drop tower?

What happens if we apply the same strategy to these three new problems? In the
problem where we have to choose an n — 1 ride sequence that does not end with a tilt-a-
whirl, there are two options for the last ride. If it was a roller coaster, we have to choose
the remaining n — 2 rides such that they do not end with a roller coaster. If it was a drop
tower, the remaining n — 2 rides may not end with a drop tower. Either way, both cases
reduce to a smaller problem of the other two types.

By introducing the three new problems A(#n), B(n) and C(n), defined as the number
of ride sequences of length n not ending in a tilt-a-whirl, roller coaster or drop tower

103

https://heap.link/problem/variedamusements

R =T RN e Y L T S P N

T "
& 8 E o

CHAPTER 7. RECURSION

respectively, we can produce recursive definitions that refer only to these recursions:

A(n)=b-B(n-1)+c-C(n-1)
B(n)=a-A(n-1)+c-C(n-1)
C(n)=a-A(n-1)+b-B(n-1)

with the base cases of A(0) = B(0) = C(0) = 1. The answer then becomes a- A(n —1) +
b-B(n-1)+c-C(n-1).

When implementing the solution in C++, don’t forget results from Exercises 2.29-2.30
to resolve the circular dependencies between functions calling each other. O

Exercise 7.7. Compute, with proof, the time complexity of the solution to Varied Amuse-
ments.

Problem 7.8.
Varied Amusements variedamusements (subtask 1)

7.5 Recursion vs. Iteration

After looking through the problems we solved in this chapter, you might wonder if re-
cursion really is needed. When computing the Fibonacci numbers by hand, we tend to
not use a method nearly as complicated as the recursive function. Instead, we write them
down one by one after each other, taking the sum of the last two ones to compute the next.
This approach could be implemented iteratively in code:

Snippet 7.4: Iterative Fibonacci

int F(int n) {

int secondlLast = e; // stores F_(i-2)

int last = 1; // stores F_(i-1)

for (int i = 2; i <= n; i++) {
// Compute F_i = F_(i-2) + F_(i-1)
int current = last + secondlLast;
// Since i will be be increased by 1, the old F_(i-1) becomes
// F_(i-2), and the old F_i becomes F_(i-1)
secondLast = last;
last = current;

}

return last;

Algorithmically, recursion - in the sense of functions calling themselves - is not
needed. As a programming construct it doesn’t bring any additional computational powers.
Recursive functions can even be simulated with a single loop and a stack, by storing the

104

https://heap.link/problem/variedamusements

7.5. RECURSION VS. ITERATION

current chain of recursive calls in the stack and processing them one at a time in the loop.
This is actually what your computer does behind the scenes?.

The reason behind the strong focus in recursion is another, namely that it is an incred-
ibly powerful mode of thinking. To us, it is unclear how one would find a natural solution
to the Dominoes problem without going in with a recursive mindset and looking for that
reduction to a smaller instance. That being said, once a recursive formulation has been
deduced, an iterative implementation can many times be simpler or faster. For example,
try to compute Fy6 using both the recursive and iterative approach. You'll see that one of
the two versions finishes, and one do not.

Solving a recursion iteratively when it has several sequences referring to each other
is possible too. It is slightly more difficult since you must be careful in what order you
compute values. All values that the one being computed is dependent on must be filled in
beforehand.

Problem 7.9.
Varied Amusements variedamusements (all subtasks)

ADDITIONAL EXERCISES

Exercise 7.10. There are # lines drawn in the plane, no two of which are parallel, and no
three lines intersecting at the same point. What is the number of connected regions they
divide the plane into?

Problem 7.11.

Odd A, Even B’s oddaevenb
Tritiling tritiling
NOTES

Recursion as a problem solving technique is a common one both in mathematics and
algorithmics. Mathematics has greater focus on finding closed forms for the recursion,
while we are happy with any kind of efficient computation. There is a rich combinatorial
theory behind finding such closed forms. As previously mentioned, Concrete Mathematics
[29] is one of the “introductory” mathematics books that really excel on teaching these
techniques.

Analytic Combinatorics [16] describes many interesting analytic methods to solve the
kind of recursive counting problem we discussed. While it's sometimes hard to find exact
solutions to analytically, those methods provide a great framework to determine the order
of growth of this kind of sequences.

3At a low level, modern processors are basically a single execution loop with a stack for function-related
memory.

105

https://heap.link/problem/variedamusements
https://heap.link/problem/oddaevenb
https://heap.link/problem/tritiling

CHAPTER 7. RECURSION

106

CHAPTER 8

Graph Theory

We end the foundational part with an introduction to graph theory, the study of mathe-
matical objects known as graphs. As a mathematical area, it dates back to the early 1700s,
when Euler first studied the famous Seven Bridges of Konigsberg problem. It is one of
the most well-studied areas in algorithmic problem solving. You can find a graph theory
problem in almost every programming contest.

8.1 Graphs

A graph is an abstract way of representing various types of relations, such as roads between
cities, friendships between people, network links between computers and so on. Put simply,
they are a set of objects where certain pairs of objects are connected. Formally, graphs are
defined in the following way.

Definition 8.1 A simple graph G = (V, E) consists of a pair V of vertices and a set E of
edges. An edge consists of a set of vertices {u, v} called the endpoints of the edge.

A graph lends itself naturally to a graphical representation, where vertices are repre-

sented by points in the plane with lines drawn between the two endpoints of each edge.
For example, the graph given by V = {1,2,3,4,5} and E = {{1,2},{2,3},{3,4},{2,4}}

can be drawn as in Figure 8.1.

Figure 8.1: An example graph with 5 vertices and 4 edges.

Exercise 8.1. Draw the graphical representation of the graph with vertices {a, b, ¢, d} and
edges {{a,b},{b,c},{c,d},{a,d},{b,d}}.

Exercise 8.2. The graph on n vertices containing all possible edges is called the complete
graph, or K,,. How many edges does K,, have?

107

CHAPTER 8. GRAPH THEORY

Trip Planning - tripplanning

Lars is planning to do a backpacking tour by train throughout N < 10° cities in Europe. He has a list
of train lines numbered from 1to M < 10° that each goes back and forth between some pair of cities,
no two between the same pair. He wants to visit the cities in the order 1, 2, ..., N, finally returning
back to his home in city 1.

Since Lars has limited vacation days, he only has time to take exactly N direct trains during his
trip. Can you determine if this is possible, and tell Lars the numbers of the train lines he should
take?

Solution. There is only a single sequence of train trips that fulfills Lars’ requirement,
namely (1,2), (2,3), ..., (N —1,N), (N,1). The problem thus asks if all of these train
lines exist. If they do, we should print their numbers. This is a typical problem that can be
modeled as a graph. In those terms, we have a graph on N vertices with its M edges given
in a list. We are asked if the graph contains a certain list of edges.

A possible solution would be to keep a vector of the indices of these particular edges
while we read the list of edges. If we find the edge {k, k + 1} for a given k, we store the
index of the edge in the k’th position in the vector. Only if we managed to find every edge
should we reply with their indexes. Otherwise, we output that there is no trip. O

We often perform operations on the set of vertices adjacent to a specific vertex,
especially in later sections when searching through graphs. These sets have a special
name.

Definition 8.2 For all edges {u, v} in a graph, the vertices u and v are neighbors or
adjacent to each other. The set of neighbors of a vertex v is called its neighborhood.
The size of the neighborhood of a vertex v is called the degree of v. It is denoted deg(v).

The degrees of the vertices in a graph fulfill many useful properties. A simple theo-
rem that shows how one can reason about graphs concerns the sum of all degrees in a
graph.

Theorem 81

The sum of degrees of a graph G = (V, E) is even. Specifically,
> deg(v) =2|E|.
veV

Proof. Both sides of the equation count the same thing. The right-hand side counts
each edge in the graph twice. For a given edge {u, v}, how many times is it counted in
the left-hand side? It contributes 1 each to the degrees of u and v, so it must be counted
twice as well. Since both sides count the same thing, they are equal. O

108

https://heap.link/problem/tripplanning

8.1. GRAPHS

Exercise 8.3. Use Theorem 8.1 to prove that there is an even number of vertices of odd
degree in a graph.

Example 81 In a graph G, the degrees of its vertices are 3, 5, 4, 4, 4, 6, 6 respectively.
Prove that there is a sequence of adjacent vertices starting and ending with the vertices
of degree 3 and 5.

Solution. Let v be the vertex of degree 3, and S the set of vertices u for which there is
a sequence of adjacent vertices starting at v and ending at u. Construct a new graph
H with S as vertices and as edges only those between two vertices in S. For every u in
S, all neighbors of u must be in S too, so the degree of a vertex in H is the same as it
was in G.

The sum of the degrees of all vertices in S is even by Theorem 8.1. Since S contains
a vertex of degree 3, it must contain another vertex of odd degree (or the sum would
be odd). The only vertex with an odd degree is the one of degree 5, so it must be in S
too. By the definition of S, there is a sequence of neighboring vertices between the
two vertices. O

Exercise 8.4. Prove that in a simple graph of at least 2 vertices, there must exist 2 vertices
of the same degree.

Problem 8.s.

Railroad railroad2
Popularity Contest popularitycontest
Hermits hermits

While the simple graph is able to represent many kinds of relations, we sometimes
need extra information to capture all the aspects we are interested in. Consider a graph
representing roads between cities, where the vertices represent the cities and the edges
correspond to the roads between them. In this case, we might be interested in also
capturing the lengths of the roads between all the cities: a situation depicted in Figure 8.2.

82 km

F-field G-grad
0 =
g e ¢ e
S % @ %
B-burg C-city D-dorf

Figure 8.2: A road network on 5 cities.

109

https://heap.link/problem/railroad2
https://heap.link/problem/popularitycontest
https://heap.link/problem/hermits

CHAPTER 8. GRAPH THEORY

We can modify our definition of an edge to include such a number, giving us a new
type of graph.

Definition 8.3 A weighted graph is a graph together with a weight function w(e) that
associates each edge e with a real-valued weight.

Weighted graphs often appear when there is a natural measure of an edge, like the distance
between two cities, the latency between two computers, or the cost of a flight between two
airports.

Problem 8.6.
Triangle Drama triangledrama

Finally, not all relations we model are symmetric in the way indicated by normal
graphs. In many situations, we prefer if an edge could have a certain direction, going from
a vertex to another vertex. For example, when modeling all the car roads in a city, some
roads may be one-way, a nuance the simple graph would miss. We fix this by making
edges ordered pairs rather than sets:

Definition 8.4 A directed graph is a graph (V, E) where E consists of directed edges, i.e.
ordered pairs (u, v) of vertices. The edge (u, v) is called an out-edge of u and in-edge
of v. Similarly, the outdegree and indegree of a vertex is the number of out-edges and
in-edges of the vertex.

When representing directed graphs graphically, edges (u, v) are arrows with the ar-
rowhead pointing from u to v (Figure 8.3).

(4 ()
N0,

Figure 8.3: The graph given by V = {1,2,3,4} and E = {(1,2), (3,1), (4,2), (4, 1) }.

Problem 8.7.
Eulerian Graphs eulerian

8.2 Representing Graphs

When dealing with graphs in algorithms, there are three common data structures used to
represent them: adjacency matrices, adjacency lists and adjacency maps. Graphs are often
given implicitly, where a problem specifies rules for how to find the edges that a given
vertex is the endpoint of. This latter representation is for example common when dealing

110

https://heap.link/problem/triangledrama
https://heap.link/problem/eulerian

8.2. REPRESENTING GRAPHS

with searches in graphs representing all the positions in a game (Section 16.3), where the
rules of the game dictate how the graph looks.

Adjacency Matrices

An adjacency matrix represents a graph on # vertices as a 2D n x n matrix in the following
way:

Definition 8.5 — Adjacency Matrices
For a directed, weighted graph with vertices V = {vy,...,v,} and weight function
w(e), the graph’s adjacency matrix is defined as the |V| x |V| matrix with entries
a,»,j = W(V,‘Vj).

For undirected graphs, we set a; j = a;; = w({vi,v;}), and for unweighted graphs
ajj = 1.

This representation uses ®(|V|*) memory, and takes ©(1) time adding, modifying
and removing edges. To iterate through the neighbors of a vertex, you need ©(|V|) time,
even if the vertex has lower degree. Adjacency matrices are best to use when |V|* ~ |E|, i.e.
when the graph is dense.

The adjacency matrix for the directed, unweighted graph in Figure 8.3 is:

1 2 3 4
110 1 0 O
210 0 0 O
3/1 0 0 O
4|1 1 0 O

When a graph allows parallel edges, i.e. multiple edges between the same pair of
vertices, or self-loops, edges going from a vertex to itself, the adjacency matrix instead
stores the number of edges between each pair of vertices. If an adjacency matrix is the
right structure for a weighted directed graph with parallel edges, it is often enough to store
the weight of the lightest edge among those that are parallel.

Adjacency Lists

Another way to represent graphs is by storing lists of neighbors for every vertex, so-called
adjacency lists. This approach uses only ®(|E| + |V|) memory. When the graph has
significantly fewer edges than |V|?, i.e. it is sparse, this can be considerably less than what
adjacency matrices use. If you use a vector to represent each list of neighbors, you also get
©(1) addition and removal (if you know the index of the edge and ignore their order) of
edges, but it takes ®(|V|) time to determine if an edge exists in the worst case. On the
upside, iterating through the neighbors of a vertex takes time proportional to the number
of neighbors instead of the number of vertices in the graph. Iterating through all the

111

CHAPTER 8. GRAPH THEORY

neighbors of all vertices takes time @(|E| + |V|) compared to ®(|V|?) for the adjacency
matrix. As with the memory usage, this is clearly better for large, sparse graphs.

When representing weighted graphs, the list stores the edges as pairs of (neighbor, weight).
For undirected graphs, both endpoints of an edge contains the other in their adjacency
lists.

This representation is common in many graph search algorithms to be studied in later
sections and Chapter 14.

Adjacency Maps

An adjacency map combines the upsides of both structures (®(1) time to check if an edge
exists) and the lists (low memory usage and fast neighborhood iteration) in a single data
structure. Instead of storing a fixed-size vector per vertex as for the matrices, or a vector
containing only the edges, we can use a hash table per vertex to store its neighbors. The
adjacent vertices are stored as keys in the table, with the weights of the corresponding
edges as their values.

This has the same time and memory complexities as the adjacency lists, but it also
allows for checking if an edge is present in ®(1) time. The downsides are that hash tables
have a higher constant factor than adjacency lists, and that you lose the ordering you
have of your neighbors (if this is important). The adjacency map also inherits another
sometimes important property from the matrix: you can remove arbitrary edges in ©(1)
time without knowing anything about its location in an adjacency list.

When a graph that is dynamically modified has a large number of vertices the adjacency
map is the representation of choice.

Exercise 8.8. Given a graph, list the appropriate representation(s) under the following
constraints.

1. |V] =1000 and |E| = 499500

2. |V] =10000 and |E| = 20000
3. |V] = 1000 and |E| = 10000

Problem 8.9.
Weak Vertices weakvertices
Eulerian Graphs 2 eulerian2

8.3 Breadth-First Search

The most common algorithms on graphs involve searching them, trying to find the kind
of sequences of adjacent vertices that Example 8.1 were about. In graph theory parlance,
they are called paths.

112

https://heap.link/problem/weakvertices
https://heap.link/problem/eulerian2

8.3. BREADTH-FIRST SEARCH

Definition 8.6 — Paths and Distances
In a graph, let (po, p1 - - ., p1) be a sequence of distinct vertices where p; and p;,; are
adjacent. We call the sequence of edges pop1, p1p2s - - . pi-1p1 a path of length I.

For two vertices v and u, we call a path of minimum length between them a shortest
path. The distance between them, written as d (v, u), is defined to be the length of a

shortest path between them.

Figure 8.4

In Figure 8.4, the sequence 5 - 1 - 2 — 4 is a path of length 3. It is not a shortest path
between the two vertices 4 and 5, which is the bolded path 5 - 2 — 4. The distance
between 4 and 5 is thus 2.

Exercise 8.10. Find the distance and a shortest path between every pair of vertices in
Figure 8.4.

For unweighted graphs, we can find the shortest paths from a given vertex to every
other vertex in the graph very efficiently.

Single-Source Shortest Path, Unweighted Edges
Given an unweighted graph and a source vertex s, compute the shortest distances d (s, v) for all
vertices in the graph.

Solution. For simplicity, we first consider the problem on a grid graph, where the unit
squares constitute vertices, and squares that share an edge are connected. Some squares
are blocked and don’t have a vertex in the graph. An example can be seen in Figure 8.5.

Figure 8.5: An example grid graph, with source marked s.

Initially, we know what vertices have distance 0. This is only the source vertex s itself.
This seems like a reasonable starting point, since the problem is about shortest paths from

113

CHAPTER 8. GRAPH THEORY

s. The next natural question is what vertices have distance 1? These are exactly those with
a path consisting of a single edge from s - it’s neighbors (marked in Figure 8.6).

Figure 8.6: The squares with distance 1 from the source.

If a vertex v has distance 2, it must be a neighbor of a vertex u with distance 1 (except
for the starting vertex). This is also a sufficient condition, since we can construct a path of
length 2 by extending the path of any neighbor of distance 1 with the edge (u, v).

Figure 8.7: The squares with distances 2, 3 and 4.

This last line of reasoning generalizes to any particular distance, i.e., that all vertices
with distance k must have a neighbor with distance k — 1 but no neighbor with a smaller
distance. The principle can be used to construct the following algorithm. Initially, we

set the distance of s to 0. Then, for every dist = 1,2, ..., we mark all vertices that have a
neighbor with distance dist — 1 as having distance dist if they did not already have a shorter
distance. O

Exercise 8.11. Use the BFS algorithm to compute the distance to every square in the
following grid:

114

1:

N

8.3. BREADTH-FIRST SEARCH

This algorithm is called the breadth-first search. As described so far it is slightly
underspecified, and could easily be implemented in quadratic time. A simple linear-time
implementation iteratively constructs lists of the vertices at each distance. Given this list
for a distance d, the list for distance d + 1 could then be constructed just as described.

procedure BREADTHFIRSTSEARCH(vertices V, vertex s)
distances < int vector of size | V| filled with co
distances[s] < 0
dist < 0
atDist < vector of vertices
atDist.add(s)
while atDist is not empty do

atDistPlusOne « vector of vertices

for every from in atDist do

for every neighbor v of from do
if distances[v] = oo then

atDistPlusOne.add(v)
distances[v] < dist +1

dist < dist +1

atDist < atDistPlusOne

return distances

Each vertex is added to nextVertices at most once, since it is only added if distances[v] =
oo which is immediately set to something else. We then iterate through all neighbors of
these vertices. The number of all neighbors is 2E in total, so the algorithm uses @(V + E)
time.

Usually, the outer loop is often coded in another way. Instead of maintaining two
separate vectors, we can merge them into a single queue:

while atDist is not empty do
from < atDist.pop()
for every neighbor v of from do
if distances[v] = oo then
atDist.add(v)

115

CHAPTER 8. GRAPH THEORY

distances[v] = distances[from] + 1

Exercise 8.12. Prove that the shorter version of the BFS loop is equivalent to the longer
one.

Problem 8.13.

Erdés Numbers erdosnumbers
Horror List horror
Erratic Ants erraticants
Button Bashing buttonbashing

In many problems the task is to find a shortest path in a graph where vertices and
edges are given implicitly, with specified rules on what edges exist. To use the BFS, we
must first figure out how the graph is generated.

8-puzzle
In the 8-puzzle, 8 tiles are arranged in a 3 x 3 grid, with one square left empty. A move in the puzzle
consists of sliding a tile into the empty square. The goal of the puzzle is to perform some moves to
reach the target configuration. The target configuration has the empty square in the bottom right
corner, with the numbers in order 1,2, 3, 4,5, 6, 7, 8 on the three lines.

-8 | 6 8 6 11213
71114 71 1] 4 41516
219513 219513 718

Figure 8.8: A puzzle with a valid move. The target configuration is to the right.

Given a puzzle, solve it in as few moves as possible. The moves should be given as a sequence of
the digit on the tile that is slided in each move.

Solution. Finding the minimum number of moves is a typical BES problem, characterized
by a starting state (the initial puzzle), some transitions (the moves we can make), and the
task of finding a short sequence of transitions to some goal state. We start solving this
problem, and figure out exactly how the sequence is constructed afterwards.

The problem must first be modeled using a graph. The vertices represent the possible
arrangements of the tiles in the grid, and an edge connects two states if they differ by a single
move. A sequence of moves from the starting arrangement to the target configuration
represents a path in this graph. The minimum number of moves required is the same as
the distance between those vertices in the graph, so we can use a BFS.

In an implicit-graph BES problem, most of the code deals with the representation of a
state as a vertex, and generating the edges that a certain vertex is adjacent to. We generally

116

https://heap.link/problem/erdosnumbers
https://heap.link/problem/horror
https://heap.link/problem/erraticants
https://heap.link/problem/buttonbashing

O N AWV AW N e

26

8.3. BREADTH-FIRST SEARCH

avoid computing the entire graph explicitly. Instead the edges from a vertex are generated
when the vertex is visited in the breadth-first search. In the 8-puzzle, we can represent
each state as a 3 x 3 2D-vector. The difficult part is generating all the states one move away
from a certain state.

Since this is mostly a language specific programming technique, we give an example
in C++ on move generation.

Snippet 8.1: Generating 8-puzzle Moves

typedef vector<vector<int>> Puzzle;

vector<Puzzle> edges(const Puzzle§ v) {
int emptyRow, emptyCol;
for (int row = @; row < 3; row++)
for (int col = @; col < 3; col++)
if (v[lrow][col] == o) {
emptyRow = row;
emptyCol = col;
}
vector<Puzzle> possibleMoves;
auto makeMove = [&§](int rowMove, int colMove) {
int newRow = emptyRow + rowMove;
int newCol = emptyCol + colMove;
if (newRow >= @ &§& newCol >= 0 &5 newRow < 3 &§& newCol < 3) {
Puzzle newPuzzle = v;
swap(newPuzzle[emptyRow][emptyCol], newPuzzle[newRow][newCol]);
possibleMoves.push_back(newPuzzle);
}
b
makeMove(-1, 0);
makeMove(1, 0);
makeMove(o, -1);
makeMove(o, 1);
return possibleMoves;

}

Note how useful the lambda language feature (Section 2.11) is. If makeMove is a separate
function, we have to pass many extra variables to it.

With the edge generation finished, the rest is a normal BFS, slightly modified to account
for the fact that the vertices are no longer numbered 0, ..., V — L. Instead of vectors, we
can use e.g. maps to store the list of distances.

Generating the actual sequence of moves remains. This is done through a process
called backtracking. To support it, the BFS must store additional information. Whenever
we add a vertex u to the queue through the edge v — u, we keep track of the fact that
u’s shortest path was an extension of v’s. With this change, the full BFS code could look
something like this:

117

© N AW AW N e

-
—
- O

12

N =T e N " S

[-
& B E o

CHAPTER 8. GRAPH THEORY

Snippet 8.2: 8-puzzle BFS

map<Puzzle, Puzzle> puzzle(Puzzle S, Puzzle target) {
map<Puzzle, int> distances;
map<Puzzle, Puzzle> from;
distances[S] = o;
queue<Puzzle> q;
q.push(s);
while (!q.empty()) {
Puzzle cur = q.front();
q.pop();
if (cur == target) break;
int dist = distances[cur];
for (auto§ move : edges(cur)) {
if (distances.find(move) != distances.end()) continue;
distances[move] = dist + 1;
q.push(move);
from[move] = cur;
}
}
return from;

}

Infinite distances to a state in distances are represented by the absence of the state (it
would be a waste to store it for all possible states). When states are integers in a vector, we
can instead use value guaranteed to exceed the maximum distance.

Given the from map, the move sequence can be constructed in reverse. Starting at the
target move, we follow the sequence of positions on the shortest path back to the initial
one by repeatedly looking up the previous position using the backtracking map. We then
compare consecutive states to see what tile was moved. This approach is outlined in the
next snippet.

Snippet 8.3: 8-puzzle Backtracking

vector<Puzzle> sequence;
sequence.push_back(target);
Puzzle at = target;
while (at !=S) {
at = from[at];
sequence.push_back(at);
}
reverse(sequence.begin(), sequence.end());
for (int i = o; i < sequence.size() - 1; i++) {
Puzzle a = sequencel[il;
Puzzle b = sequencel[i + 1];
// Look at the difference between a and b...

To simplify the backtracking, the from mapping often stores both the previous state and
the actual move to avoid having to reconstruct a move from two states. O

118

8.3. BREADTH-FIRST SEARCH

Competitive Tip

Sometimes, using maps with keys like 3 x 3 vectors in the BFS is too slow. When this happens,
you can try to simplify the key type. In the 8-puzzle problem, there is a mapping from puzzles to
9-digit integers: write out the digits of the puzzle one row at a time. Using integers as map keys
gives a (sometimes significantly) better constant factor - for the 8-puzzle, about 2.4 times better
when the author tested it!

In some solutions we can even map the state to integers so small that we can use a vector
instead. In this case, there are only 9-8----- 2 -1 = 362880 possible states (why?), so if we manage
to find a mapping like that we can avoid maps entirely. This change gave the author another
factor 2 speedup for the 8-puzzle.

Problem 8.14.
Peg Solitaire solitaire

Pebble Solitaire pebblesolitaire2

While this kind of search problem directly uses the shortest paths found by a standard
BEFS as the answer, some problems require modifications of a BFS, or use the distances
generated only as an intermediary result.

Shortest Cycle
V(V-1)

Find the length of the shortest cycle in a graph on V' <200 and E < —5— edges. A cycle is a path

with an extra edge between the first and last vertices.

Solution. We use a typical simplifying reduction for graphs. The shortest cycle in the
entire graph is a very global property, and they are usually hard to compute directly. It is
often easier to restrict what you are trying to compute to something local, like the shortest
cycle that a given vertex is part of. As long as we can find that cycle in linear time, we
can afford doing this for every vertex in the graph, while guaranteeing that we find the
shortest cycle overall.

To find the shortest cycle containing some given vertex, a modified BFS does the trick.
Consider how the vertices on a cycle are searched by the BES.

o%0 @@G
oJOOXO
oo

Figure 8.9: The BFS search order along a cycle.

119

https://heap.link/problem/solitaire
https://heap.link/problem/pebblesolitaire2

CHAPTER 8. GRAPH THEORY

On an even-length cycle, the vertex furthest away from the source node is the first vertex
seen twice by vertices closer to the source. On an odd-length cycle, one of the two vertices
furthest away is instead the vertex first seen by a vertex with the same distance to the
source. Checking for when one of these events occur inside the BES is simple, but one can
also check for these two conditions after performing the BFS. O

Exercise 8.15. In Shortest Cycle, the proposed algorithm can detect cycles that the source
vertex is not actually part of, as in the following graph.

(2)
@»@ié

Is this a problem for the algorithm?

Problem 8.16.
Beehives beehives

Exercise 8.17. A variant of the shortest path problem is when there is no longer a single
source, but potentially multiple. Rather than finding the distance from each vertex to
the source, we want to find the distance to any source for each vertex in the graph. This
problem can be reduced to the single source version and thus solved with a single BFS.
Find this reduction.

Problem 8.18.
Wet Tiles wettiles
Fire fire2

Exercise 8.19. The original BFS algorithm hides a way to find shortest paths in weighted
graphs where all edge weights are either 1 or 0. The idea is that if we encounter an
edge (v, u) with weight 0 at some point, we can add it to the vector atDist rather than
atDistPlusOne, since u has the same distance as v (and thus should be processed at the
same time). How can this idea be integrated into the shortened BFS algorithm?

Problem 8.20.
Bridges bryr

Ocean Currents oceancurrents

8.4 Depth-First Search

In some graph searches we don't care about finding the shortest path to all other vertices,
but are rather interested in if there is a path at all. This is the case when we want to
determine connectivity in a graph.

120

https://heap.link/problem/beehives
https://heap.link/problem/wettiles
https://heap.link/problem/fire2
https://heap.link/problem/bryr
https://heap.link/problem/oceancurrents

1
2:
3:
4

8.4. DEPTH-FIRST SEARCH

Definition 8.7 If there exists a path with vertices u and v as endpoints, we call them
connected. If all vertices in a graph are connected we call the entire graph connected.

The maximal connected vertex subsets of a graph are called the connected compo-
nents of the graph.

Each vertex belongs to a single component, so they form a partition of the vertices. This is
a fact we use in the next problem.

Sailing Friends - sailingfriends
A common saying goes that if you like sailing, it is much better to have a friend with a boat rather
than being the friend with a boat.”

Being mathematically inclined, you have realized that this property applies recursively - it is
much better to be the friend of a friend with a boat rather than having a boat, and so on.

In a small coastal city, there are N < 100 000 people, some of which already have boats. Among
them, E < 200000 pairs of people are friends with each other. You start to wonder, what is the
smallest amount of people who would have to buy a boat so that everyone in the city either owns a
boat or could borrow one from a friend (possibly indirectly through a friend of a friend of a ...)?

“Boats are very expensive and require a lot of maintenance, we have heard.

Solution. With the new terminology on connectivity, we can formulate this with graphs.
All the people and their friendships form an undirected graph. Someone can borrow a
boat if anyone in their connected component has a boat. Thus, the number of extra people
who need to buy a boat equals the number of connected components in which nobody
has a boat.

It is a bit overkill to use BES for the task of searching through components for vertices
with boats since we are not interested in finding any shortest paths. A similar alternative
is to start a search from some source vertex and perform the search recursively for each
neighbor, rather than searching every neighbor before their neighbors are searched. The
algorithm is similar to the BFS, but they search the graph in a very different order. The
breadth-first search grows the set of visited vertices using a wide frontier around the source
vertex, while the depth-first search instead tries to first plunge deeper into the graph as
long as it finds a new vertex (hence the names). An example of how a DFS can search a
graph is given in Figure 8.10, where the vertices are marked with the order in which they
are visited.

This results in very short code to search the component containing a given vertex and
determine if it contains a boat:

procedure FINDBoAT(vertex at)
seen[at] = true
foundBoat < hasBoat| at]
for every neighbor next of at do

121

https://heap.link/problem/sailingfriends

N

R ow

CHAPTER 8. GRAPH THEORY

Figure 8.10: Normal arrows indicate when the DFS enters a node, while dashed arrows show when
the DFS backtracks.

if not seen[next] and FindBoat(next) then
hasBoat « true
return hasBoat

To keep track of what vertices have been visited by the search, we use a global array seen.
The search is done until all vertices must have been visited:

: extraBoats < 0
: for ever person p do

if not seen[p] then
if not FindBoat(p) then
extraBoats < extraBoats + 1 OJ
Problem 8.21.
Reachable Roads reachableroads
A Mazing! amazing
Dropping Directions droppingdirections

It might seem as if the DFS is just a weaker version of the BES that is somewhat easier
to code. This is true until Chapter 14, where we study advanced applications of the DFS
where the BFS can not help us. Why not wait until then to introduce it? Due to the
simplicity of coding the DFS compared to a BFS, it is usually the algorithm of choice in
problems where we just want to determine connectivity, so adding it to your toolbox early
will save you a lot of time until then. We show another application where some opt to use
a DFS over a BFS, namely two-coloring graphs.

Breaking Bad - breakingbad
By Bjarki Agist Gudmundsson. RU AFLV 2014. CC BY 3.0. Shortened.
Walter was once a promising chemist. Now he teaches high school students chemistry, and was
recently diagnosed with lung cancer. In both desperation and excitement he decides to use his
chemistry skills to produce illegal drugs and make quick money for his family. He forms a partnership

122

https://heap.link/problem/reachableroads
https://heap.link/problem/amazing
https://heap.link/problem/droppingdirections
https://heap.link/problem/breakingbad

[

L ® N 22w R @

8.5. TREES

with one of his old students, Jesse, who has some experience with the drug scene.

Now Walter and Jesse are preparing for their first “cook” (the process of making the drugs).
They have a list of N <100 000 items they need for the cook, but they realized they have to be very
careful when going to the store. The reason is that it may be suspicious to buy one of M < 100000
pairs of items, like cold medicine and battery acid, in the same trip.

They decide to divide the items among themselves, so that each of them can go one trip to the
store and buy their share of items without the risk of anyone becoming suspicious. Help them find
such a division, or tell them that it is not possible.

Solution. In graph terms, the problem is called two-coloring. We can construct a graph
with the items as vertices and the forbidden pairs of items are edges. The problem be-
comes to color each vertex either red or blue (meaning that Walter or Jesse buys the item,
respectively) such that no edge (a forbidden pair) connects two vertices of the same color.

To solve the problem, we should look at what constraints the color of a vertex puts on
colors in general. We can always pick a random vertex and color it blue (by symmetry) to
start with. If a vertex is blue, all its neighbors must be red for the graph to be two-colored.
Similarly, a vertex that is painted red must have only blue neighbors. This coloring can be
constructed recursively by a DFS:

: procedure TwoCoLOR(vertex at, color)

if coloring[at] = uncolored then
coloring[at] = color
else if coloring[at] # color then
Answer “impossible”
else
return
for every neighbor next of at do
TwoColor (next, the opposite of color) 0

Exercise 8.22. Prove that a graph is two-colourable if and only if it contains no odd-length
cycles.

Problem 8.23.

Hoppers hoppers

8.5 'Trees

On a special kind of graph, the DFS can actually solve the single source shortest path
problem. This is the case when, for any pair of vertices, there is exactly one path between
them. The DFS paths from a certain source must then be the shortest ones. These graphs
have a simple characterization.

123

https://heap.link/problem/hoppers

CHAPTER 8. GRAPH THEORY

Definition 8.8 A connected graph that does not contain any cycles is called a tree. A
graph where all connected components are trees is called a forest.

Since a cycle trivially has two paths between each pair of vertices on it, the lack of them is
a necessary condition for the path between any two vertices to be unique. We leave the
other direction as an exercise.

Exercise 8.24. Prove that in a tree, there is exactly one path between any pair of vertices.

Exercise 8.25. A tree vertex with degree 1 is called a leaf. Prove that a tree with at least 2
vertices has at least 2 leaves.

Exercise 8.26. Prove that a tree with n vertices have exactly n — 1 edges.

Exercise 8.27. In a graph on n vertices, a subset of #n — 1 edges that is also a tree is called
a spanning tree (it necessarily connects all vertices in the graph, i.e. it spans the entire
graph). A connected graph always has a spanning tree. Show how to find it using the DFS.

Trees are represented using adjacency lists in most cases, since they are the most sparse
(connected) graphs possible. The input formats vary quite a bit though, and may require
some conversion to the adjacency list format.

Many graph problems can be solved faster and easier when dealing with trees rather
than general graphs. Most of the well-known NP-complete graph problems with only
known exponential-time algorithms instead takes polynomial time on trees.

Tree Diameter
In a graph, we compute the distance d(a, b) for every pair of vertices. The largest such distance is
called the diameter of the graph. Given a tree, compute its diameter.

Solution. In a general graph, the diameter is normally found by performing a BES from
each vertex to find the distances between every pair of vertices and taking the maximum
of all distances. This gives a @(V(V + E)) algorithm.

In trees, the path uniqueness property gives us a substantial speedup compared to the
general case. The maximum distance is the longest overall path in the tree. While finding
the longest path in general graphs is NP-complete, for trees two applications of the DFS
is enough. To find one of those endpoints, consider the situation in Figure 8.11 with a
diameter a-b. Any vertex f on the diameter must have one of a and b as its furthest away
vertex v. Otherwise, at least one of a-f-v or b-f-v forms a path that is longer than a-b.
It may be the case that one of those paths have the same length as a-b, but then v is the
endpoint of another diameter (it is not necessarily unique). If we knew one endpoint a
of the longest path, a single DFS is enough to find the other one - it is by definition the
vertex furthest away from a.

The same is true for all other vertices too. Consider the subtree formed by a vertex on
the diameter, for example f, and all vertices in one of the connected subtrees for which it

124

N

*® N 2w R @

8.5. TREES

Figure 8.11: A tree with diameter a-b.

is the closest vertex on the diameter, such as d, ¢ and e. If the longest path of some vertex
d in the subtree goes through f, the other end of this path must be the furthest vertex
from f, known to be a diameter endpoint. If it does not go through f, the furthest vertex
from d is instead within the subtree.

Assume that this furthest vertex is e. The length of this path is bounded by d(d, e) <
d(d, f)+d(e, f). The distance d(e, f) < d(a, f) where a is the diameter endpoint closest
to f,orelsed(e,b) =d(e, f)+d(f,b) >d(a, f)+d(f,b) = d(a,b) would give a longer
diameter. Then d(d, e) < d(d, f) +d(f,a) = d(d, a), so that a was actually further away
from d than e after all.

The conclusion of this argument is that for any vertex, the vertex furthest away from it
must be an endpoint of a diameter. This can be found using a DFS too, giving us our two
searches.

The DFS is even easier to implement for trees. Since there are no cycles, the only way
a DFS might try to visit a vertex twice is when checking the edge that the DFS entered the
vertex from. This can be fixed by adding the previous vertex as a parameter to the DFS,
avoiding the need for a global array to keep track of visited vertices.

: procedure FURTHESTVERTEX(Vertex at, vertex last)

(distance, furthest) < (0, at)
for every neighbor next of at do
if next # last then
(nextDistance, nextFurthest) < FurthestVertex(next, at)
if nextDistance + 1 > distance then
(distance, furthest) < (nextDistance + 1, nextFurthest)

return (distance, furthest) O

Problem 8.28.
Adjoin the Networks adjoin

Krtica krtica

We have already seen another way of representing trees when studying heaps (Sec-
tion 6.4.2). Here, we formalize and generalize this representation.

125

https://heap.link/problem/adjoin
https://heap.link/problem/krtica

CHAPTER 8. GRAPH THEORY

Definition 8.9 A rooted tree is a tree where one vertex is selected as the root of the tree.
For a vertex, the single neighbor closer to the root is called its parent, while the ones
further away from the root are called its children.

(R~
() Q)
OO0 O

Figure 8.12: A rooted tree. Arrows points from parent to child. The root is marked R.

An arbitrary tree can be made rooted by selecting a vertex to be the root. Finding the
parent and children of every vertex given the root is then done with a single DFS from the
root. We have often talked about subgraphs and subtrees of graphs, as subsets of the vertices
and edges in a graph. For rooted trees, the convention is that the subtree of a vertex is the
subtree formed by a vertex and all its children, grand-children, grand-grand-children and
SO on.

Fuzzy Family Tree - fuzzyfamilytree
Your friend Sue B. Tree, of the Rootingford Trees is facing a problem. Her clan of well-known
algorithmic problem solvers have a large painting of their family tree hanging on the wall, tracing
the lineage of the n <100 000 family members all the way back to Enar E. Tree himself, known for
the invention of the B-tree data structure. After some 32 generations or so, many names on the
painting have faded so much that nobody knows exactly which vertex in the family tree belongs to
the founder of the clan.

Sue has managed to read the names of some adjacent pairs of names for which she knows which
one of them is the parent of the other. Given the layout of the family tree and the list of known
parental relations, can you help Sue figure out what vertices in the tree could possibly represent Enar
E. Tree? It is known that each person only have a single parent within the clan (causing cycles in
family tree is grounds for immediate excommunication, even after 32 generations).

Solution. Formulated in terms of graphs, we are given a tree and want to find the vertices
that may be roots in this tree, given some pairs of vertices that must be the parent and
child of each other in a rooting. The straightforward ®(n?) solution is to try all possible
rootings and then verify that each relation holds. This is too slow for such large # however.

Let us instead ask exactly what it means to have one of these parent-child constraints.
Can we easily characterize necessary and sufficient conditions for a possible rooting? In
Figure 8.13 we have drawn such a constraint, where p is known to be the immediate parent
of a c. Since p by definition is closer to the root than ¢, we know that no vertex to the left

126

https://heap.link/problem/fuzzyfamilytree

8.6. TOPOLOGICAL SORTING

Figure 813

of ¢ can be the root. The path to any such vertex from p goes through ¢, so p would be
further away from it. Symmetrically, p is closer to any vertex to the right of p. This means
that the roots that do not satisfy this particular constraint are exactly those that in the
subtree of ¢ if p was the root.

This gives us two paths forward — do we mark all valid roots for the constraint and
answer with the roots valid for every constraint, or do we mark all invalid roots and instead
answer with the roots that was not invalid for any constraint? The first option requires us
to mark a linear number of vertices as valid for each constraint, while we are theoretically
able to only mark each invalid vertex once in the other approach. The following insight
asks you to prove how we would do this.

Exercise 8.29. Assume that for every constraint (p, ¢), we perform a DFS from ¢ to mark
roots as invalid. Prove that whenever the DFS encounters a vertex v already marked as
invalid, all vertices that would be marked by recursing into v are already marked as invalid.

This means that all the depth-first searches amortized over all constraints takes only

linear time. O
Problem 8.30.

Kitten on a Tree kitten

Marbles On A Tree marblestree

8.6 Topological Sorting

A directed graph is the data structure of choice for encoding different kinds of dependencies
among objects. For example, construction projects consist of a large number of steps.
Many can be done in parallel, but some steps have a strict happens-before relationship.
When building a house, you can plan the interior decor as soon as the architectural plans
of the house are finished, but you can never start mounting the roof before you put up the
load-bearing walls! When this is modeled as a directed graph, we take the various stages
in the process as vertices and draw an edge from u to v if u depends on v.

Given a dependency graph, in what order should we perform the actions if we want
to complete them one at a time? This is a question of real, practical concern. In software
engineering, the compilation of software in many languages requires performing interde-
pendent actions one at a time in an order such that an action is performed only after all its
dependencies. We call an ordering of this kind a topological ordering of the graph and

127

https://heap.link/problem/kitten
https://heap.link/problem/marblestree

1:

]

S A]

N

CHAPTER 8. GRAPH THEORY

2OSOEONG-0

Figure 8.4: A topologically ordered directed graph.

the process of finding it topological sorting (see Figure 8.14 for an example). Intuitively, a
graph should have a topological ordering as long as there are no actions that depend on
each other in a cycle (that the graph must lack cycles is clearly a necessary condition, at
least). These graphs — directed without cycles - are called directed acyclic graphs, normally
abbreviated DAG.

Exercise 8.31. Prove that if a directed graph does not have any cycles, it has a topological
ordering.

Topological Ordering
Given a directed graph with V vertices and E edges without cycles, find a topological ordering of it.

Solution. An ordering is easy to find in theory: choose as first vertex any one without an
outgoing edge. This gives us an O(V?) algorithm - find such a vertex by looping over
them all, add it to the ordering and remove any edges going into it (with some careful
graph representation to avoid an O(VE) algorithm).

The general approach is correct, and can with small improvements be made linear-time.
To avoid looping over all vertices to find one without outgoing edges, we keep a queue
with vertices that currently have no outedges. When a vertex is added to the ordering
we remove some edges, so new vertices may have to be added to the queue if we remove
their last outgoing edge. To quickly find the set of edges to remove when a vertex is added
to the topological ordering we store the reverse of all edges instead, so that each vertex
has a list of its incoming edges. The final trick is to not remove any edges explicitly - the
above algorithm only cares about the number of outgoing edges for each vertex. The final
algorithm bears some resemblance with the BFS.

procedure ToroLoGICALSORT(graph V, E)

outdegree < int vector of size | V|

inedges < vector of vertex vectors of size | V|

for every edge v — u in E do
increment outdegree[v] by 1
inedges[u].append(v)

ordering < vertex vector

q < vertex queue

add all v where outdegree[v] =0to g

128

10:
11:

12:

14:
15:
16:

17:

8.6. TOPOLOGICAL SORTING

while g is not empty do

v < q.pop()
ordering.append(v)

for u in inedges[v] do
decrement outdegree[u] by 1
if outdegree[u] = 0 then

q.add(u)

return ordering

Problem 8.32.
Reactivity Series
Brexit

Build Dependencies

reactivity
brexit
builddeps

Exercise 8.33. A tournament is a directed graph where for every pair of vertices v and u
exactly one of (v, u) or (u,v) is an edge. Prove that if a tournament has cycles, its shortest

cycle has length 3.

ADDITIONAL EXERCISES

Problem 8.34.

Lava

Pub-lic Good

Frozen Rose-Heads
Molekule

Distinctive Character
Torn To Pieces

Brexit Negotiations
Pokémon Ice Maze
Conservation
Conquest Campaign
Mall Mania

Marten’s DFS

Flight Planning
Amanda Lounges
Import Spaghetti
Landlocked

Who's the Boss?
Through the Grapevine
Fountain

On Average They’re Purple

lava

pubs

frozenrose
molekule
distinctivecharacter
torn2pieces
brexitnegotiations
pokemon
conservation
conquestcampaign
mallmania
martensdfs

flight

amanda
importspaghetti
landlocked
whostheboss
grapevine

fontan

onaveragetheyrepurple

(all subtasks)

129

https://heap.link/problem/reactivity
https://heap.link/problem/brexit
https://heap.link/problem/builddeps
https://heap.link/problem/lava
https://heap.link/problem/pubs
https://heap.link/problem/frozenrose
https://heap.link/problem/molekule
https://heap.link/problem/distinctivecharacter
https://heap.link/problem/torn2pieces
https://heap.link/problem/brexitnegotiations
https://heap.link/problem/pokemon
https://heap.link/problem/conservation
https://heap.link/problem/conquestcampaign
https://heap.link/problem/mallmania
https://heap.link/problem/martensdfs
https://heap.link/problem/flight
https://heap.link/problem/amanda
https://heap.link/problem/importspaghetti
https://heap.link/problem/landlocked
https://heap.link/problem/whostheboss
https://heap.link/problem/grapevine
https://heap.link/problem/fontan
https://heap.link/problem/onaveragetheyrepurple

CHAPTER 8. GRAPH THEORY

NoOTES

This chapter is but a tiny peek into the area of algorithmic graph theory. The tools we
picked up here are mostly for the purposes of solving easier ad-hoc graph problems and
supporting us in developing other kinds of techniques. Graph theoretic algorithms are
postponed to Chapters 14 and 15 when we have built up the necessary knowledge to tackle
them. Solution methods for graph theory is a true potpourri of a wide range of graph
theoretic algorithms, advanced data structures, a large bag of common tricks and raw
mathematical problem solving.

For further resources, Graph Theory [13] by Reinhard Diestel is widely acknowledged
as the go-to book on more advanced concepts. The book is freely available for viewing at
the its home page'. We save reading tips into algorithmic graph theory until we revisit
graph theory.

1heap .link/diestel-graph-theory

130

https://heap.link/diestel-graph-theory

Part 11

Common Techniques

CHAPTER 9

Brute Force

Many problems are solved by testing a large number of possibilities. For example, chess
engines work by testing countless variations of moves and choosing the ones resulting in
the “best” positions. This approach is called brute force. Brute force algorithms exploit
that computers are fast, resulting in you having to be less smart. Just as with chess engines,
brute force solutions might still require some ingenuity. A brute force problem might have
a simple algorithm that requires a computer to evaluate 24° options, while some deeper
analysis might be able to reduce this to 22°. This would be a huge reduction in running
time. Different approaches to brute force may be the key factor in reaching the latter case
instead of the former.

This chapter deals with optimization problems and search problems that can be formu-
lated in the following way. In them, we are given some search space of possible solution
candidates S and a value function f. The goal is to find a solution x in S that maximizes
f(x), i.e. to optimize the function. For search problems, we typically want to find a
solution that the problems defines as “valid”. A lot of algorithmic problems can be for-
mulated this way, as we see in this chapter. A famous search problem is the NP-complete
Hamiltonian cycle problem: given a graph, find a cycle that visits every vertex exactly
once. Its optimization variant the Traveling Salesman Problem (TSP) is perhaps even more
famous: in a weighted graph, find the Hamiltonian cycle of least weight. TSP has many
practical applications, for instance logistics companies that want to minimize the total
distance traveled to deliver a set of packages. The search space for TSP is the set of all
Hamiltonian cycles, with f(x) equal to the weight of the cycle.

Brute force is an umbrella term for all solution steps that more-or-less naively try many
options. The most obvious one is to check the entire search space S for the best solution,
which is slow for large S. This and the two following chapters (on Greedy Algorithms
and Dynamic Programming) develop techniques that exploit the particular structures of
problems to perform smarter searches than this.

9.1 Generate and Test

Before we work on techniques to make brute force solutions smarter, we start with ways
of solving optimization and problems at all. Our first method is generate and test. This
brute force strategy is based on generating solutions — naively constructing candidate
solutions to a problem - and then testing them - evaluating the value function on them

133

1
2
3
4
5
6
7
8
9

CHAPTER 9. BRUTE FORCE

and removing any potentially invalid solution candidates that were accidentally generated.
It is applicable whenever the number of candidate solutions is quite small.

Maximum Cligue — maxclique
In a graph, a subset of vertices form a clique if each pair of vertices is connected by an edge.

Figure 9.1: A graph with a clique of size 4 highlighted.

Given a graph with V vertices, determine the size of the largest clique.

Solution. This problem is one of the so-called NP-complete problems we mentioned in
Chapter 5. Thus, a polynomial-time solution is currently out of reach. We solve the
problem in exponential time for V < 15.

Is a generate and test approach suitable? To know, we must first define what our
candidate solutions are. In this problem, only one object comes naturally: subsets of
vertices. For every vertex subset candidate, we want to test whether it is a clique and
among those choose the largest one.

In the maximum clique problem, there are only 2" subsets of vertices — a quite small
number. Given a vertex subset, we can verify whether it is a clique in O(V?) time by
checking if every pair of vertices in the candidate subset has an edge between them. To
perform this check in @(1) time, we store the graph as an adjacency matrix. This gives us
a total complexity of ®(2" - V?) in the worst case. According to our table of approximate
allowed input sizes for various complexities (p. 71), this should be fast enough for V' = 15.

When coding a solution like this, you typically use bitwise operations to generate all
the subsets of a set (p. 87). Since this is a common type of brute force, we include a C++
solution rather than pseudo code to illustrate how this is done.

Maximum Clique

int maxClique(int V, const vector<vector<bool>>§ adj) {
int largest = o;
for (int subset = 0; subset < (1 << V); subset++) {
bool isClique = true;
for (int 1 = 0; i < V; i++)
if ((subset & (1 << 1)) !'= o)
for (int j = 0; j < V; j++)
if (i !'= j &5 (subset & (1 << j)) != o &5 ladjl[il[jl)
isClique = false;

134

https://heap.link/problem/maxclique

9.1. GENERATE AND TEST

if (isClique)

largest = max(largest builtin_popcount(subset));

| J—

}
return largest;

} O

Exercise 9.1. The maximum clique algorithm can be made to run in ®(2" - N) by repre-
senting neighborhoods using bitsets. Adapt the above code to do this.

This kind of brute force problem is often easy to spot. There will be a very small input
limit on the parameter you are to brute force over. Solutions are often subsets of some
greater set, or all combinations of smaller sets.

Problem 9.2.

Maximum Clique maxclique (for 2 points)
4 thought sthought

Lifting Walls walls

Font font

Let us look at another example of this technique on a non-optimization problem,
where solution candidates are not just subsets.

The Clock — klockan

By Par Soderhjelm. Swedish Olympiad in Informatics 2004, School Qualifiers.
When someone asks you what time it is, most people respond “a quarter past five”, “15:29” or
something similar. If you want to make things a bit harder, you can answer with the angle from the
minute hand to the hour hand, since this uniquely determines the time. However, most people are
not used to this way of specifying the time, so it would be nice to have a program which translates

this to a more common format.

Figure 9.2: The angle between the hands at time 02:30.

We assume that our clock have no seconds hand, and only displays the time at whole minutes
(i.e., both hands only move forward once a minute). The angle is determined by starting at the hour
hand and measuring the number of degrees clockwise to the minute hand. To avoid decimals, this

135

https://heap.link/problem/maxclique
https://heap.link/problem/4thought
https://heap.link/problem/walls
https://heap.link/problem/font
https://heap.link/problem/klockan

1

e Y v k@

CHAPTER 9. BRUTE FORCE

angle is specified in tenths of a degree.
Given the angle 0 < A < 3600, find the current time.

Solution. 1Itis difficult to come up with a formula that gives the correct times as a function
of the angles between the hands on a clock. Instead, we can turn the problem around. If
we know what the time is, can we compute the angle between the two hands of the clock?

Assume that the time is currently h hours and m minutes. The minutes hand is then

at angle <> 369 60 m = 6m degrees clockwise from straight up. Similarly, the hour hand moves
360 h = 30h degrees clockwise after 41 whole hours, with an extra 31620 610 m = 0.5m degrees

added due to the minute. While computing the current time directly from the angle is
difficult, computing the angle from the current time is easy.

The generate and test solution is to compute the angle at each of the 60 - 12 = 720
possible times and test which one matched the given angle:

: procedure CLOCK(A)

for h < 0to1l1do
for m < 0to 59 do
> Angles are 10’ths of degrees.
hourAng < 300h + 5m
minuteAng < 60m
angBetween < (minuteAng — hourAng + 3600) mod 3600
if angBetween = A then
return h:m O

Exercise 9.3. Can there be two times that produce the same angle? If yes, give an example.
If no, prove that there are no two such times.

Competitive Tip

Competitions sometimes pose problems which are solvable quite fast, but where a brute force
algorithm works just as well. Code the simplest correct solution that is fast enough, even if you
see a faster one.

Problem 9.4.

The Clock klockan (all subtasks)
All about that base allaboutthatbase

Perket perket

9.2 Backtracking

Backtracking is a variation of the generate and test method that serves two different
purposes. First, it is a way to construct candidate solutions recursively when they have a
more complicated structure. For example, consider our solution to the maximum clique
problem, where we generated candidate subsets using bitsets. An alternative would be to

136

https://heap.link/problem/klockan
https://heap.link/problem/allaboutthatbase
https://heap.link/problem/perket

N

N v R oW

9.2. BACKTRACKING

go through each vertex one at a time, deciding whether to include it in the current clique
candidate or not in a recursive fashion.

A recursive procedure of this kind does not add many lines compared to the bitset
strategy, but is in practice significantly slower due to the overhead of function calls:

: procedure RECURSIVESUBSET(at, N, I)
if at = N then

output [

return
RecursiveSubset(at + 1, N, I)
addatto I
RecursiveSubset(at +1, N, 1)

The procedure keeps track of the number of vertices at we have taken this decision for
so far, as well as the set of vertices I that we have decided to include in the subset in this
recursive branch. The recursion is started with RecursiveSubset(0, N, {}).

Exercise 9.5. Compute the total number of recursive calls made by the function.

Secondly, the recursive nature of backtracking allows us to integrate the testing step
directly into the generation step through pruning. This means that we try to exclude
invalid candidate solutions, or candidate solutions we somehow know can never beat a
better one that we have already found, by testing partial solutions at each recursive step,
rather than waiting until the very end. Once a partial candidate is identified as being
infeasible, the backtracking can stop early. The effect this has on the recursion is illustrated
in Figure 9.3.

Include 1?7

Figure 9.3: Recursive backtracking over subsets. The subsets {1,2} and {2,3} were invalid partial
candidates that were pruned from the recursion.

If there are much fewer valid partial candidates than total candidates that a generate
and test approach would check, this saves time. The general guideline is that backtracking

137

[

AN A I

CHAPTER 9. BRUTE FORCE

works best when we can:

« construct candidate solutions recursively,

o quickly determine whether a partial candidate solution can possibly be completed
to a candidate solution, and

o the number of valid partial solutions is sufficiently small.

We look at three representative backtracking problems to build understanding of the
method. In the first problem, we use backtracking mostly as a smarter means to generate
all the candidate solutions, and they are so few that this is fast enough without any pruning.
In the following one, we must figure out some more difficult pruning heuristics, and
they unfortunately don’t result in any easily proven bounds that gives us confidence in a
solution. The final problem is the most difficult to solve, but we are able to prove that the
pruning we end up with is good enough.

6-cliques
Given a graph with 45 vertices, compute the number of cliques with at most 6 vertices in it.

Solution. The bitset generation of subsets doesn’t work here since there are 2** of them -
too many to test. A smarter generation strategy is to only generate subsets with at most 6
vertices and then test if they are cliques. For 45 vertices there are only 9 531 040 such subsets
(in Chapter 18 you learn how to count them), so this approach would be much faster. The
recursive method we showed to generate all subsets only need a slight modification:

: procedure 6SUBSETS(at, N, I)

if at = N or I has size 6 then
check if I is a clique
return

6Subsets(at +1,N,I)

addatto I

6Subsets(at + 1, N, I)

This solution does more recursive calls than one for each subset, so it’s not obviously
fast enough. To analyze it, we should first realize that I has size at most 5 except for in the
final recursive call when the 6’th element is added. There are 8145 060 subsets of size 6, to
which we need to add the calls where |I| < 5. For each such I, the function is called with at
most 45 different values of N. There are 1385980 subsets of size at most 5, so the number
of extra calls is bounded by 62369100, giving us less than ~ 70 x 10 recursive calls.

To avoid extra costs in verifying if a subset is actually a clique, we should integrate
neighbor checking into the recursive function when a new vertex is added to I, preferably
using bitsets (Exercise 9.1). O

138

9.2. BACKTRACKING

Problem 9.6.

Class Picture classpicture
Geppetto geppetto
Map Colouring mapcolouring

We move on to the kind of backtracking problem that is more of an art than problem
solving. Here, the goal is to come up with smart enough constraints for when a partial
solution should not be checked further. It is hard to know exactly when you should be
happy with the pruning strategy you have, but testing your code on cases you think should
be the worst-case for your solution is often good enough.

Semi-Magic Knight Tour — magicalmysteryknight
In chess, the knight is a piece that moves one step either horizontally or vertically, and two steps in
the other direction (for example two steps up and one step to the left) for a total of 8 moves. On a
normal 8 x 8 chess board, the knight is capable of starting anywhere on the board and through 63
moves Visit every square on the board. This is called a knight tour.

A semi-magic chess board is one where each integer 1 through 64 is written in one of the squares,
such that each row and column have the same sum - 260.

These two concepts can be combined to form a semi-magic knight tour. A knight is placed
somewhere on the chess board and the integer 1 is written on that square. The knight now performs
a tour on the chess board, writing in turn the integers 2, 3, .. ., 64 on the squares it visits. If these
numbers form a semi-magic chess board, this was a semi-magic knight tour.

You are given a chessboard with at least 19 distinct integers between 1 and 64. The integer 1 is
always present on the board. Find any semi-magic knight tour that has the given numbers on the
given squares. It is guaranteed that there exists at least one tour that agrees with the given numbers.

Solution. This is a fairly standard backtrack-and-prune problem, where the main difficulty
lies in knowing how to prune. The backtracking itself is done by recursively constructing
all knight tours from the starting square given in the problem. If the i’th square of the
knight is given by the input, we have to make sure that the (i — 1)’th move we make
connects to that square (which might allow us to fast-forward moves if the (i +1)’st square
is also fixed, and so on).

From here on, you just let your creativity flow in finding optimizations. The first things
that should be looked at are the sums of each row and column. We know what they should
sum up to, and the more moves that are made, the harder it should be to find numbers
that actually sum up to the right thing for a given row or column. This makes the sum
constraints the obvious thing to attack in a partial solution.

The simplest constraint is that if a row has sum S and k squares yet to be visited, we
must have S +64-k > 260 - a square can never have a larger value than 64, so the left-hand
side is an upper bound on the attainable row sum. This is a very lax bound that can be
improved further. We cannot fill all the empty squares with 64, only a single one. A better
upper bound would be 64 + 63 + - + (64 — k +1). To improve the bound even more, think

139

https://heap.link/problem/classpicture
https://heap.link/problem/geppetto
https://heap.link/problem/mapcolouring
https://heap.link/problem/magicalmysteryknight

CHAPTER 9. BRUTE FORCE

about how the knight moves. It can never visit the same row twice in a row, so the empty
squares in the row can only be filled with every other number, giving us the upper bound
64+62+-+(64-2(k-1)). A similar lower bound can be made that takes into account
what integer the knight writes next on its tour.

There are several variants of the above pruning heuristic. Most of them turns out to
degenerate into the above in the special case where the squares fixed in the input are the
19 first on the tour. This is, at least for almost every heuristic the author could conceive of,
the worst case. Intuitively, the complexity of recursive solutions increases with the number
of consecutive decisions that have to be made correctly, so for tour constructions these are
typically worst cases. In this particular problem, having the 18 first and the final square
be fixed can also be a bad case, if there are several possible final squares and each one
requires some specific sequence of early moves.

An other heuristic that unfortunately is negated by the suggested worst case is to check
how many moves are required to move from the current position of the knight to the next
square fixed by the input. If this is larger than the number of moves until that fixed square,
we can immediately backtrack.

A heuristic that is very powerful for the case we proposed is checking if there are
isolated and dead-end squares. We call a square isolated if there are no free squares that
the knight could jump into the square from, and dead-end if there is only a single such
square. A partial solution is clearly not allowed to have an isolated square since the knight
can never visit it. Similarly, a dead-end square must be the last one the knight visits, since
it can’t move away from it. This means that there can be at most one dead-end square.
Checking for these two conditions turns out to slow down random test cases a lot since it
is an expensive heuristic to compute, but is very helpful in the case where only the initial
squares are fixed because the solution backtracks for a long time in partial candidates
with such squares that can never be visited. Together with the best version of the sum
heuristic, this pruning strategy - if implemented well in a fast language - is enough to get
accepted’. O

It turns out that there are only 140 valid semi-magic knight tours. When solving the
problem outside of a contest situation (the problem appeared in a 5-hour contest) it is
possible to spend a few days of compute time to generate all tours ahead of time and
hard-code them in your program. For some problems, this is a legit solution approach
even during a contest. A brute force solution may be much easier to solve by precomputing
some values that only takes maybe a minute to compute ahead of time. For instance,
computing the n’th value of some simple recursive formula like the Fibonacci number F,
for a large n, say 10, is much faster if you precompute every millionth value. Any given n
is at most a million computation steps away from the precomputed ones. This is better

'In the contest the problem was given in, the first heuristic was enough, but stronger problem instances
were later added to the online version on Kattis.

140

9.2. BACKTRACKING

than having to compute the 10°’th value from the base cases.

So far, backtracking has seemed straightforward, even if we needed some smart pruning
in the last problem. A popular type of backtracking in contests today are variants of NP-
complete problems where some extra constraint is added that allows for faster solutions
than those for the general case. In this next problem, we are given a special case of the
independent set graph theory problem where the degree of every vertex is at most 4. An
independent set is the dual of a clique: a subset of vertices where no pair of vertices in the
set is adjacent.

Basin City Surveillance - basincity
By Pal G. Drange and Markus S. Dregi. NCPC 2014. CC BY-SA 3.0. Shortened.

BasiN CrTy is known for her incredibly high crime rates. The police see no option but to tighten
security. They want to install exactly k < 15 traffic drones at some of the # <100 000 intersections to
observe who's running on a red light. If a car runs a red light, the drone will chase and stop the car
to give the driver an appropriate ticket. The drones are quite stupid, however, and a drone will stop
before it comes to the next intersection as it might otherwise lose its way home, its home being the
traffic light to which it is assigned. The drones are not able to detect the presence of other drones, so
the police’s R&D department found out that if a drone was placed at some intersection, then it was
best not to put any drones at any of the neighboring intersections. As is usual in many cities, there
are no intersections in Basin City with more than four other neighboring intersections.

The drones are government funded, so the police force would like to buy as many drones as
they are allowed to. Being the programmer-go-to for the Basin City Police Department, they ask
you to decide, for a given number of drones, whether it is possible to position exactly this number
of drones.

Solution. At a first glance, it is not even obvious whether the problem is a brute force
problem, or if some smarter principle should be applied. After all, 100000 is a huge
number of intersections! The problem becomes more reasonable after our first insight. If
we have many intersections, all adjacent to very few other intersection, it should be easy
to select k non-adjacent intersections. To formalize this insight, consider what happens
when we place a drone at an intersection.

Figure 9.4: The intersections affected by placing a drone at an intersection.

141

https://heap.link/problem/basincity

CHAPTER 9. BRUTE FORCE

By placing a drone at the intersection marked in black in Figure 9.4, at most five inter-
sections are affected - the intersection we placed the drone at, along with its neighboring
intersections. If we would remove these five intersections, we would be left with a new city
where we need to place k — 1 drones. This simple fact — which is the basis of a recursive
solution to the problem - tells us that if we have N > 5k — 4 intersections, we immediately
know the answer is possible. The —4 terms comes from the fact that when placing the final
drone, we no longer care about removing its neighborhood, since no further placements
will take place.

We can therefore assume that the number of intersections is less than 5-15 - 4 = 71,
i.e., n < 70. This certainly makes the problem seem much more tractable. Now, let us start
developing solutions to the problem.

First of all, we can attempt to use the same algorithm as for the 6-clique problem., i.e.
recursively constructing the set of our k drones by, for each intersection, testing to either
place a drone there or not. Placing a drone at an intersection forbids us from placing
drones at any neighboring intersection.

Unfortunately, the number of recursive options this tests is the number of subsets of
at most 15 vertices of 70, a way too large number (in general the number of k-subsets of
an n-set grows like ®(#*) for a fixed k, as we learn in Section 18.3.1). The values of n
and k do suggest that an exponential complexity is in order, just not of this kind. Instead,
something similar to O(c*) where c is a small constant would be a better fit. One way of
achieving such a complexity would be to limit the number of intersections we must test to
place a drone at before trying one that definitely works. If we could manage to test only ¢
such intersections, we would get a complexity of O(c*).

Competitive Tip

In this problem, we tried to use the size of the parameters # and k together with the time limit
to guide the kind of solution we need to design. While this works most of the time, note that
this can sometimes be severely misleading - as this problem was before we realized that having
100 000 intersections was a red herring.

The trick, yet again, comes from Figure 9.4. Assume that we choose to include the
black intersection in our solution, but still can not construct a solution. The only reason
this case can happen is (aside from bad previous choices) that no optimal solution includes
this intersection. What could possibly stop this intersection from being included in an
optimal solution? At least one of its neighbors must be included in every optimal solution.
Otherwise, we could just pick an optimal solution where none of the neighbors were
included and add the intersection to it. Fortunately for us, this gives us just what we need
to improve our algorithm - either a given intersection or one of its neighbors can be
included in any optimal solution.

We have accomplished our goal of reducing the number of intersections to test for

142

9.2. BACKTRACKING

each drone to a mere 5, which gives us a complexity of about O(5%) (possibly with an
additional polynomial factor in n depending on implementation). This is still too much
unless, as the jury noted, some “clever heuristics” are applied. Fortunately for us, we
have two techniques left that speeds things up dramatically (even giving us a better time
complexity).

The first trick is to assume that the graph we are working with is connected. In many
problems the connected components of the graph are all independent of each other. This is
also the case in this problem. Placing a drone on an intersection only affects its immediate
neighbors and recursively their neighbors, but never a different connected component.
Since components are independent, we can solve them separately by computing the
maximal number of drones that can be placed in each component, until we have placed
all the k drones.

How does the connectedness help us? Consider what happens when we have placed
our first drone on the black intersection as in Figure 9.4. After excluding it and its adjacent
intersections, the neighbors of the adjacent intersections are left with at most 3 neighbors
instead. Recursing on one of those intersection results in only 4 choices, either placing a
drone on the intersection itself one of its (at most 3) neighbors. In fact, after placing at
least one drone in a connected component, it always has an intersection with at most 3
neighbors.

Exercise 9.7. In a connected graph with maximum degree 4, we remove a subset of the
vertices. Prove that there is at least one remaining vertex of degree 3.

Taking this insight to its conclusion, we achieve a complexity of O(4¥) by always
branching on the intersection with the fewest neighbors.

While such an algorithm is significantly faster than O(5*), further improvements
are possible. Again, let us consider under what circumstances a certain intersection is
excluded from any optimal solution. We have already concluded that if this is the case,
then one of its neighbors must be included in any optimal solution. Can it ever be the case
that only one of its neighbors are included in an optimal solution, as in Figure 9.5 where
we tested to place a drone at the black vertex rather than a as in Figure 9.4?

Figure 9.5: Placing a drone at a single neighbor of an intersection.

143

CHAPTER 9. BRUTE FORCE

This is actually never the case. In any solution we can move the drone from the
black intersection back to a if the black intersection was the only of a’s neighbors with a
drone. Now, we are basically done; for any intersection, there will either be an optimal
solution including it, or (at least) two of its neighbors. Since an intersection has at most
4 neighbors, it has at most 6 pairs of neighbors. This means that the recursion requires
at most T'(k) < T(k —1) + 6T (k — 2) steps in the worst case, which is bounded by 3* (a
solution to the recurrence). A final improvement would be to combine this insight with
the independence of the connected components. The second term of the time recurrence
would then be a 3 instead of a 6 (as 3 neighbors make 3 pairs). Solving this recurrence
gives us the complexity O(2.31%). O

Note that we could always reduce the number of vertices in the graph to 5k — 4. As
of writing, the best solution to the problem for the version with maximum degree 4 is
0(1.14") = O(1.91F) [59], which is better than our solution but not by a very large amount.
The currently best solution for the general case is instead 0(1.20") = 0(2.49%) [60],
which our solution is provably better than.

Problem 9.8.

Domino domino
Fruit Baskets fruitbaskets
All Friends friends

So, what is the take-away regarding backtracking? Start by finding a way to construct
candidate solutions iteratively. Then, try to integrate the process of testing the validity
of a solution with the iterative construction, in the hope of significantly reducing the
number of candidate solutions that need evaluating. Finally, we might need to use some
additional insights, such as what to branch on (which can be something complicated like
the neighborhood of a vertex), deciding whether to backtrack or not (i.e. improving the
testing part) or reducing the number of branches necessary (speeding up the generation
part).

9.3 Parameter Fixing

Parameter fixing is one of the most widespread brute force methods since it’s often used
as a simplifying step in problems that are mainly about some completely other topic than
brute force. It is the algorithmic equivalent of the mathematical problem solving technique
known as casework, i.e. simplifying a problem by dividing it into sub-cases that are easier
to solve. For example, a mathematical problem may become much easier to reason about
if you knew the parity of some integer # in the problem, so you solve the problem for the
cases where 7 is odd or even separately.

In algorithmic problem solving, we can use the fact that computers are able to work
through a huge number of cases to greatly simplify some problems. Sometimes, we might

144

https://heap.link/problem/domino
https://heap.link/problem/fruitbaskets
https://heap.link/problem/friends

9.3. PARAMETER FIXING

be able to take a parameter in a solution space and try all possible values. This is what we
call “fixing” the parameter. The idea is that while any single choice of the parameter may
be wrong, we are testing all of them and one of them is bound to be correct.

The path to a solution usually starts in the other end. Let us explain the technique
with a problem.

Buying Books - kopabocker
By Par Soderhjelm. Swedish Olympiad in Informatics 2010, Finals.
You are going to buy N < 100 books, and are currently checking the different M < 15 internet book
stores for prices. Each book is sold by at least one book store, and can vary in prices between the
different stores. Furthermore, each book store incur a postage fee if you order from it. Postage may
vary between the various book stores, but it is always the same for a book store no matter how many
books you decide to order. You may order any number of books from any number of the book stores.
Compute the smallest amount of money you need to pay for all the books.

Solution. If we performed naive generate and test on this problem, we would probably get
something like 15'%° solutions, by testing every book store for each book. This is infeasible.
So, why can we do better than this? There must be some hidden structure in the problem
that makes testing all those possibilities unnecessary. To find this structure, we analyze
a candidate solution as given by the naive generate and test method, i.e. an assignment
from each book to a book store where we should purchase it from.

For the sake of example, let’s assume that in this candidate solution, we purchased
books from the book stores 1, 4 and 5. If we then purchased a book from store 4, but it
was actually cheaper from store 1, we should have picked it from there instead. Thus there
seems to be quite a bit of redundancy in this set of candidate solutions - a strong hint that
we might have found some crucial insight. We could decide to use this fact to turn our
generate and test into a backtracking algorithm, by pruning away any solution where we
at some point decide to purchase a book from a book store that contains a book that we
already purchased at a cheaper price. Unfortunately, this is easily defeated by giving most
of the books equal prices at most of the book stores.

Let’s use the insight differently. Our observation hints that making a choice for every
book is not especially good, since choices elsewhere affects the optimality of an individual
book choice greatly. Digging deeper, we find that we do not really have any choice in
where we buy the books. During the course of the suggested backtracking, what matters is
never what particular store we purchased a book from. Rather, it is only of interest what
stores we have decided to use so far — this uniquely determines where we purchase every
book from, since we are forced to buy the book from the cheapest store that we buy books
from.

At this point, we are basically done. We have reduced the amount of information we
need to know in order to easily find a solution “which book stores do we purchase from?”.
This parameter has much fewer possibilities — only 2'°. By testing each possible choice and

145

https://heap.link/problem/kopabocker

N

AR A T

N

10:

CHAPTER 9. BRUTE FORCE

fixing it, we can immediately find the best candidate solution using the “cheapest store for
each book” rule. Since we test every option for this parameter in the full set of candidate
solutions, we must also test one that is given by a optimal solution. This results in the
following pseudo code:

: procedure BuyINGBoOKs(N, M, costs C, postages P)

answer < oo
for every subset S of bookstores do
cost < 0
for every s in S do
cost < cost + P[s]
for every book b do
cost < cost + min;in s C[i][b]
answer < min(answer, cost)

return answer O

Alternatively, we could have come to the same insight by asking ourselves, can we brute
force over the book stores? Whenever you have small parameters in a problem, this is a
question worth asking. The other important mental heuristic to use is looking for things
that would make the problem simpler if you were able to just remove them. For example,
certain ordering constraints can be removed by brute forcing over all permutations of
something, choices can be removed by brute forcing over subsets (like in Buying Books)
and so on. In fact, we have already used the parameter fixing technique back in Section 8.3
when we found the shortest cycle in an undirected graph. There, we fixed the parameter
“a vertex that lies on the shortest cycle” by trying all possibilities.

The parameter to brute force over is not always this explicit, as in the following problem
which asks us to find all integer solutions to an equation in a certain interval.

Digital Root Equation
Given integers a (Ja| <10000), b (1 < b <£10), and ¢ (|¢| < 10000), find all integer solutions 7 to the
equation
n=a-dr(n)’ +c
where dr(n) is the digital root digital root of n. To get the digital root of an integere, repeatedly

replace it with its digit sum until it is less than 10. For example, dr(919) =1: 9+1+9=19,1+9 =10,
and1+0=1

Solution. The only explicit object we have to brute force over is #n. Unfortunately there
are way too many possibilities for that to be feasible. If we bound # from the right
hand side - the digital root is always between 0 and 9 — we see that it’s always between
-10000-9' —10 000 and 10 000 - 9'° +10 000, we get roughly 7 - 10" possibilities to check.
Instead, studying the equation a bit closer, we see that dr(n) also varies as a function of .
This is helpful, since dr(n) has far fewer options than n - there are only 10 possible digital

146

9.4. MEET IN THE MIDDLE

roots of any integer. Thus, we can solve the problem by looping over all the possibles
values of dr(n). This uniquely fixes our right hand side, which equals n. Given that 1, we
verify that dr(#) has the correct value.

Whenever we have such a function, i.e. one with a large domain (like # in the problem)
but a small image (like dr(#n) in the problem), this technique can be used by brute forcing
over the image instead. This is actually what we did in the book store problem. Our
function was then from a given candidate solution to the book stores used. Since the image
of this function (all the possible subsets of book stores) was small, the problem could be

attacked by brute forcing over the image of the function rather than the domain. O
Problem 9.9.

Nered nered

Multigram multigram

Shopping Plan shoppingplan

Milestones milestones

Candy godis (all subtasks)

9.4 Meet in the Middle

The meet in the middle (MITM) technique is a special case of the parameter fixing tech-
nique. The general theme is to first fix half of the parameter space and build some fast
data structure that allows us to quickly find the best choice of parameters when we later
brute force over the other half. Basically, we try to avoid the multiplicative effect of brute
forcing the latter half for each choice of the first half with the additive effect of only brute
forcing each half once. It is a space-time trade-off in the sense that we improve the time
usage (testing half of the parameter space much faster), by paying with increased memory
usage (to save the precomputed structures).

Subset Sum
Given a set of integers S, find a subset with a sum equal to T, or determine that no such subset exists.

Solution. In this classic NP-complete problem, a simple generate and test solution would
have N parameters to brute force over. For each element of S, we either choose to include
itin A or not - a total of two choices for each parameter. This naive attempt at solving the
problem (which amounts to computing the sum of every subset) gives us a complexity
of O(2Y). While sufficient for e.g. N = 20, we can make an improvement that makes the
problem tractable even for N = 40.

The trick to a faster solution is that the choices we make among individual parameters
is highly independent. If we have decided which of the first ' elements to include in the
subset, these choices together only put a single constraint on the remaining % elements. If
the sum of the elements chosen from that first half is U, the sum of the latter half must be

147

https://heap.link/problem/nered
https://heap.link/problem/multigram
https://heap.link/problem/shoppingplan
https://heap.link/problem/milestones
https://heap.link/problem/godis

]

AN A I]

N

10:

11:

CHAPTER 9. BRUTE FORCE

T - U for the sum to be correct Thus, if we could quickly answer the question “can we
choose the latter half of the integers such that they have a given sum?” we could solve
the problem by fixing the first half of the parameters. Each constraint individually takes
O(27) time to check if we use brute force. However, we can compute the answer for all
such questions in one go by computing the sum of every subset of the latter half, which
takes ©(27) time as well. The resulting sums and subsets can be inserted into a hash map,
letting us determine if a sum can be formed using the last half of the elements in ©(1)
instead. Here is the space-time trade-off — we sacrifice an exponential amount of memory
(a map of 27 elements) to win an exponential speedup of 27,

Initially the complexity might seem to be ®(N22) since it takes ®(N)) on average to
compute the sums of all subsets of half of the elements. It’s possible to reduce this to O(1) by
generating them in increasing order of subset size and computing sums by adding a single
new element to an already computed sum, using the bitset trick __builtin_ctz(x & ~x) to
find the index of the lowest set bit of the bitset x.

The pseudo code for our meet in the middle solution looks something like this:

: procedure SUBSETSUM(S, T)

Lset « the @ first elements of S
Rset < the elements of S not in Lset
Lsums < new map
for each subset L of Lset do

Lsums[the sum of L] = L
for each subset R of Rset do

remainder = T — the sum of R

if Lsums contains the key remainder then

return the union of Lsums|[remainder] and R

return impossible 0

Problem 9.10.

Closest Sums closestsums
Celebrity Split celebritysplit
Indoorienteering indoorienteering
Rubik’s Revenge in ... 2DI? 3D? rubiksrevenge

To figure out if a meet in the middle solution is applicable, the constraints that the
parameters of the first half put on the second half should be “simple” somehow. A meet in
the middle solution is possible for the maximum clique problem as well, albeit it is slightly
harder. The solution approach would ask the question: for a given clique constructed from
the first % vertices, what is the largest clique compatible with it (i.e., neighboring all the
vertices in the first clique) that can be constructed from the % latter vertices?

Answering this is relatively easy after generating all the cliques among the second half.
If we have such a clique C, where all vertices neighbor the set A among the first half, the

148

https://heap.link/problem/closestsums
https://heap.link/problem/celebritysplit
https://heap.link/problem/indoorienteering
https://heap.link/problem/rubiksrevenge

1:

2:

3
4
5
6:
7
8

9.4. MEET IN THE MIDDLE

cliques that C will be compatible with are exactly the subsets of A. To compute this quickly
in®(N 27), we use a neat looping trick that has many similar uses:

procedure CLIQUEPRECOMPUTE(N)

largest < map from vertex sets to integers

for every clique C in the latter half of the vertices do
compatible < those of the first % vertices adjacent to all vertices in C
largest[compatible] < max(largest[compatible], the size of C)

for every subset S of the first & vertices in decreasing order of size do
for each subset S’ with one element removed from S do

largest[S'] < max(largest[S'], largest[S])

The key is that the second for-loop iterates through all subsets S in decreasing order of size,
which makes sure that every answer for a compatible set is propagated to all its subsets
correctly.

Problem 9.11.
Maximum Clique maxclique (for 4 points)

Sometimes, meet in the middle is not immediately applicable. Perhaps there are some
other constraints in the problem that prevents it from working. We end the chapter with
an example of this in the form of a neat combination problem where we also need the
parameter fixing technique.

Limited Correspondence - correspondence
By Greg Hamerly. ICPC 2012 Dress Rehearsal. CC BY-SA 3.0. Shortened.

Emil, a Polish mathematician, sent a simple puzzle by post to his British friend, Alan. Alan sent a
reply saying he didn’t have an infinite amount of time he could spend on such non-essential things.
Emil modified his puzzle (making it a bit more restricted) and sent it back to Alan. Alan then solved
the puzzle.

Here is the original puzzle Emil sent: given a sequence of k < 11 pairs of strings (ai, b1), (a2, b2),
... (ak, bx), find a non-empty sequence si, sz, . . ., Sm such that the following is true:

asas, ... 4as, = by bs,...bs,

where ag, as, . .. indicates string concatenation. All the 2k strings contain only lowercase a-z and
are at most 100 characters long. The modified puzzle that Emil sent added the following restriction:
foralli # j,s; #sj.

You don’t have enough time to solve Emil’s original puzzle. Can you solve the modified version?
First, determine if the puzzle has a solution or not. If it has, find the shortest one. If there are multiple
such sequences, find the lexicographically first.

Solution. The original problem as posed by Emil® is called the Post correspondence prob-
lem and is an undecidable problem, i.e. there is no algorithm in the familiar sense that can

2Emil Post, an American mathematician

149

https://heap.link/problem/maxclique
https://heap.link/problem/correspondence

CHAPTER 9. BRUTE FORCE

solve the problem in finite time.

Alan’s added restriction to the problem, that if i # j, then s; # s;, means that each pair
of strings may be used in the sequence at most once. The problem can then be solved in
finite time. We can test all k! permutations of the pairs, and walk through them to see if
the two strings formed by the respective strings of all the pairs match. This would require
around k! - k - 100 operations which is about 4 - 10! for the maximum k = 11 - too slow.

The big difference in this problem compared to the one where we could perform meet
in the middle is that our selection of strings is highly order dependent. We can't arbitrarily
split up our word pairs into a “first half” and a “second half” and attempt to combine
them. After all, the correct solution might involve constructing a string where words from
the two halves are intertwined. Thankfully, the last section showed us precisely how to
deal with this obstacle. If an arbitrary choice is not good enough, we try all the choices.
We fix the parameter that is the subset of word pairs constituting the first half. There are
only 462 ways in which one can pick the first 5 word pairs out of a maximum eleven - a
small price to pay.

Fixing parameters thus allows us to split up the words in two halves. This begs the
question — for each possible permutations of the words in the first half, what constraint
do they put on the second half? Let’s check. Assume that a given permutation of the
(currently fixed) first half of the pairs give a concatenated string of a’s is the string S, and
without loss of generality is shorter than the concatenation of the b’s. First of all, S must
be a substring of the concatenation of the b’s — otherwise, concatenating the strings of the
second half can’t make them equal. Thus, we assume that the concatenation of the b’s is
ST.

Symmetrically, the concatenation of all b’s in the second half is the string U, the
concatenation of all the a’s must be TU, to together make the string STU. Thus, the
question is — can we order the words of the second part so that they create strings of
the form U and TU for any U? This is precisely the kind of simple question that makes
meet in the middle possible. To answer it quickly, we check the concatenations of each
permutation of the 6 words in the second half. If one of them is of the form U and XU
for some X, we store it in a hash map from X to the lexicographically smallest U that we
found. With this map in hand, we can determine if there is a way to complete the strings
formed by the first half in constant time.

In total, the cost is somewhere around about 462 - (5! -5+ 6! - 6) =~ 2 - 10° hash map
operations, and 462 - (5! - 1000 + 6! - 1200) =~ 4.5 - 10® individual character operations
depending on the implementation. While the latter seems like a lot, solving the worst-case
on the author’s computer 5 times takes less than a second. O

ADDITIONAL EXERCISES

Problem 9.12.
Key to Knowledge keytoknowledge

150

https://heap.link/problem/keytoknowledge

9.4. MEET IN THE MIDDLE

Holey N-Queens (Batman)
Tautology

Knights in Fen
Committee Assignment
Circuit Counting
Infiltration

Vase Collection
Maximizing your Pay
Boggle

Maximum Clique
Political Development
Folded Map

holeynqueensbatman
tautology

knightsfen
committeeassignment
countcircuits
infiltration

vase
maximizingyourpay
boggle

maxclique (all subtasks)
politicaldevelopment
foldedmap

NoOTES

A deeper dive into exact brute force solutions can be found in Exact Exponential Algo-
rithms [19]. The book also discusses several techniques that are common within algorithm
problem solving. Another neat technique with elements of brute force is color-coding [1]
to solve certain graph theoretical problems.

A concept that often comes up in research and and occasionally in programming
competitions, is that of fixed parameter tractability. A problem that might (as of now)
only have exponential time algorithms, such as the maximum clique problem, may have a
polynomial solution when fixing some parameter, such as the size of the maximum clique.
Indeed, we saw that the problem of finding the largest clique of size at most 6 admitted a
polynomial solution in the number of vertices. Parameterized Algorithms [12] provide a
comprehensive toolbox for such problems.

We skipped several brute force search techniques that are normally discussed in
algorithm text books, such as A*, IDA*, bidirectional search (which is basically meet in
the middle during a BFS), and so on. Those kinds of methods are unusual nowadays
in competitive programming, and as algorithmic problems solved for leisure somewhat
uninteresting. Here we refer to chapters on searching and in your favorite Al fundamentals
textbook, for example [43].

151

https://heap.link/problem/holeynqueensbatman
https://heap.link/problem/tautology
https://heap.link/problem/knightsfen
https://heap.link/problem/committeeassignment
https://heap.link/problem/countcircuits
https://heap.link/problem/infiltration
https://heap.link/problem/vase
https://heap.link/problem/maximizingyourpay
https://heap.link/problem/boggle
https://heap.link/problem/maxclique
https://heap.link/problem/politicaldevelopment
https://heap.link/problem/foldedmap

CHAPTER 9. BRUTE FORCE

152

1:

2:

wohRo®

CHAPTER 10

Greedy Algorithms

In this chapter we look at another standard technique to solve some categories of search
and optimization problems faster than naive brute force, by exploiting properties of local
optimality.

From the outside, greedy algorithms look like heuristic solutions that just happen
to work. Of course, there are mathematical reasons for why something that looks like a
heuristic is correct. As algorithmic problem solvers, this means that greedy algorithms
also require correctness proofs. As competitive programmers, we are instead happy as
long as we (and the online judge!) are convinced that the idea is correct by intuition.

We are thus introduced to a third kind of algorithmic problem. Previously, we have
almost exclusively worked with problems that either were mostly implementation exercises,
or where we needed to come up with some fast algorithm but the correctness was obvious.
Greedy problems on the other hand force us to not only see where our intuition leads
us, but also to prove it correct. Problems have shown traces of this aspect (such as the
tree diameter problem or the correctness of the pruning rules in Basin City), but greedy
algorithms is the only category where provable correctness (rather than clever algorithmic
or data structure tricks) is the focus of every problem.

101 Locally Optimal Choices

We start with an archetypical greedy problem, the change-making problem.

Change-making Problem, Denominations 1,2,5
Given an infinite number of coins of denominations 1, 2, 5, determine the smallest number of coins
summing to T < 10",

Solution. We can use the tools from brute force to formulate a backtracking solution. A
recursive function takes T and attempts to add a single coin of each type x to recursively
try and form T — x instead:

procedure MAKECHANGE(T)
if T = 0 then
return 0
answer < 1+ MakeChange(T - 1)
if T > 2 then

153

CHAPTER 10. GREEDY ALGORITHMS

answer < min(answer, 1+ MakeChange(T - 2))
if T > 5 then
answer < min(answer, 1 + MakeChange(T - 5))

return answer

Like most backtracking solutions, this takes exponential time. It branches three times
per call and each call decreases T by at most 5, so the recursion will have a depth of at
least % It thus has a (weak) lower bound of Q(3€) which, for the T in the problem, is so
large that the algorithm will never finish'.

If we formulate a recursive formula such as those in Chapter 7:

Change(T-1) ifT>1
Change(T) = 1+ min{ Change(T —-2) if T>2 (10.1)
Change(T -5) ifT>5

(with base case Change(0) = 0) you might remember that it can be computed in linear
time iteratively for increasing values of T since the recursive calls have already been
computed, having smaller values of T. This is actually a sneak peek of the next chapter on
dynamic programming, but unfortunately it doesn't help us here — T is too large even for
a linear time complexity to be of any help.

Like all of our recursive problems so far, we can formulate change making as a sequence
of choices. The choice here is, for a given T, should the next coin chosen be of value 1, 2 or
52 Which of these choices do we think is the best one? If you had to pay a friend T money
from your infinite collection of coins, how would you do it? Intuitively (a word you will
grow tired of hearing in this chapter), you try to pay with large denominations first. As
long as we have the choice of paying with a 5 coin, we can try doing so. Once T goes below
5, we instead pick a 2 coin until T < 2, when we pay with a single one coin if we need to.

Even if this might not be optimal, the strategy should not be too bad. To confirm that
we are on the right track, we start with a quick argument for why this can only be worse
by a constant amount (i.e. not a constant factor, but a constant number of coins) than the
optimal solution. The best solution never uses more than 5 coins of value 1 or of value 2,
since they could then be replaced by 1 or 2 coins of value 5 for fewer coins in total. Thus
we can never be more than 8 coins from optimality.

We can take this line of reasoning further. First, we never have to use more than a
single 1 coin, since we can replace two of them with a single 2 coin. On the other hand, if
we do use a1 coin, we never want to use two 2 coins, as we could exchange one 1 coin and
two 2 coins for a single 5 coin. If we don’t choose a 1 coin, we can have either o, 1 or 2 two
coins. Picking a third 2 coin gives us the value 6, which only takes a single 1 and 5 coin to
make.

! At least not before the heat death of the universe (or whatever model of ultimate fate of the universe you
subscribe to), after which performing meaningful computation becomes slightly harder.

154

10.1. Locarry OpTIMAL CHOICES

The possibilities for the number of 1 and 2 coins left are:

 no 1 or 2 coins: value o,

o asingle 1 coin: value 1,

« asingle 2 coin: value 2,

« oneland 2 coin: value 3, or

o two 2 coins: value 4.

These values are also optimal for T = 0. .. 4, easily verified using the recursive formula.
It’s also exactly what choosing the largest coin at every T would produce - a very strong
hint that we are on the right track. To tie everything up, one thing stands out in the list —
none of the combinations exceed the value 5, so whenever T > 5 it must be optimal to use
5 coins until we reach one of those cases, i.e. exactly what our strategy does.

We have shown that no matter the value of T, the optimal choice is to always pick the
largest coin that does not exceed T. The number of coins this strategy produces can be
computed in constant time. O

Problem 10.1.
The Bus Card busskortet (all subtasks)
Minimal Fibonacci Sum fibonaccisum

A typical reaction after first seeing this problem is that the solution is obvious. Of
course the right strategy must be to pay with the largest coin first. That’s the choice that
brings us closest to the goal at each time. Exercise 10.2 shows why this is a treacherous
way of thinking.

Exercise 10.2. Prove that the greedy choice may fail if the coins have denominations 1, 6
and 7.

While sometimes incorrect, the sentiment “do what seems best at the time” is the core
of greedy algorithms. We call those choices locally optimal. They might not produce
the correct solution (i.e. be the globally optimal choice), but at least seem like reasonable
choices in the given situation. To make the point that greedy algorithms are best used
when proven, we give you the following exercise.

Exercise 10.3. For the following problems and suggested greedy algorithm, give an example
that proves it incorrect.

1. You have some books of three different widths 1, 2, and 3. They should be placed
into a number of bookshelves, each of width L. How many bookshelves do you
need?

Greedy Algorithm: add one bookshelf at a time and fill it in the following way. First
place as many books as possible of width 3 in it, then those of width 2, and finally
those of width 1. Repeat this until all books are placed.

155

https://heap.link/problem/busskortet
https://heap.link/problem/fibonaccisum

CHAPTER 10. GREEDY ALGORITHMS

2.

A postal service requires a different amount of workers every day of the week,
W1, ..., Wy, but the same amounts every week. A worker always do 3-day shifts.
Shifts starting on the weekend wrap around onto the Monday and Tuesday of the
following week. How many shifts do you need to schedule to ensure that there are
enough workers every day?

Greedy Algorithm: Let w; shifts start on Monday. For each following day i, add
max(0, i —w;_; — w;_,) shifts to that day.

. On a rectangular grid with H x W squares (H and W are even), fill each square

with one letter A, B or C such that there are a As, b BsandcCs(a+b+c=H-W),
and no two horizontally or vertically adjacent squares have the same letter.
Greedy Algorithm: assume that a > b > c. Order the squares in the following way:
first those with coordinates (r, ¢) where r + ¢ is even, first in increasing order of r
and then c. Then add the square with r + ¢ odd in the same order. Place an A on
the a first of those squares, then a B on the b next squares, and then a C on the ¢
next squares.

Proving the correctness of a locally optimal choice is sometimes very cumbersome. In

the remainder of the chapter, we are going to look at a few standard greedy techniques
and problems. Take note of the kind of arguments we are going to use — there are a few
common types of proofs often used for greedy algorithms.

Competitive Tip

If you have the choice between a greedy algorithm and another algorithm (such as one based

on brute force or dynamic programming) where both are equally fast, the non-greedy choice is

better if you have a hard time proving the correctness of the greedy one.

On the other hand, if an greedy algorithm that you have some confidence in is very easy

to code and you are not penalized for incorrect attempts you can save valuable contest time by

skipping a proof.

Problem 10.4.

Falling Apart fallingapart
Coloring Socks color
Planting Trees plantingtrees
Logland logland

10.2 Extreme Values

So when do locally optimal choices work, and how do you find them? Naturally, to be able

to discuss a best choice, there must be some ordering of the choices. The best choice is

then one of the extreme values of that ordering. Typical extreme values are:

o the greatest or smallest element,

156

https://heap.link/problem/fallingapart
https://heap.link/problem/color
https://heap.link/problem/plantingtrees
https://heap.link/problem/logland

10.2. EXTREME VALUES

« the widest, shortest or leftmost interval,

o the vertex with greatest or smallest degree,

o the shortest or longest edge,
and so on. An occasionally helpful guiding principle for when to look for a greedy choice
is when a problem just doesn’t seem like it can be solved in any other way. This generally

means that the problem looks like it must be solved in near-linear time (very common for
greedy algorithms) but everything non-greedy would take more time.

Sequence - sequencereduction
By Jakub Radoszewski. Baltic Olympiad in Informatics 2007.
A sequence of N < 10® distinct integers ai, . .., ay is to be reduced to a single integer. To do this,
you can choose two adjacent integers a; and a;4; and remove the smaller one, called a reduction
operation. This operation costs max(a;, ai+1). Determine the minimum total cost of performing
N — 1 such operations (after which the sequence has a single integer).

Solution. This problem is one of those where an experienced problem solver would imme-
diately look for something greedy. You have so little time per operation to find the optimal
choice that anything smarter than a greedy algorithm seems unlikely. We show several
quite different solutions, all very natural. Which one you arrive at depends on from which
direction the problem is attacked.

First, a small simplification: we add oo as the first and last elements of the sequence.
This removes some edge cases in the solution, but does not change the answer (we would
never want to perform an operation with them since they are so large anyway).

If we apply the principle of extreme values, some questions come to mind.

o What operation has the lowest cost?
o What operation removes the smallest element?
« What operation has the greatest cost?

o What operation removes the greatest element?

We start with the first question. Assume that an operation (4a;, a,41) has the lowest cost,
and that a;,; > a; so the cost is a;,;. Since it is the lowest cost operation, we must also
have a;_; > a;y or (a;_1, a;) would have a lower cost.

We claim that it must be optimal to perform this operation, i.e. removing 4; at the
cost a;1. It is clear that a; must be reduced with one of its two adjacent elements at some
point. If we are to do it now, we should of course choose a;,; since this is the smaller of
the two. Could it ever be better to wait for a while before this reduction? The only thing
that could change is that a;,, is replaced at some point with a greater number, increasing
the cost of removing a;. On the other hand, no cost can be increased by removing a;
now, since it is never the cost in any reduction operation (as its two surrounding elements

157

https://heap.link/problem/sequencereduction

CHAPTER 10. GREEDY ALGORITHMS

can never decrease). This gives an immediate quadratic solution - find the lowest cost
operation repeatedly and perform it.

To get to a slightly simpler solution, we can move on to the second question. In
the above solution, we never actually used that the operation performed was the one
with lowest cost. This assumption was only helpful in establishing a trio of elements
a;_1 > a; < a;4; with the conclusion that for three elements where this holds, we can
reduce a; with the smaller of its adjacent elements without making anything worse. Can
we find such a trio faster than looking at all possible operations? Yes — the smallest a;
tulfills those two inequalities. By going through all the elements in increasing order and
reducing them with their smaller neighbor we also get an optimal solution. Keeping track
of how the sequence looks throughout these reductions is now a data structure question
that can be solved by using sorted sets. That last step can be done in linear time, but the
solution is @ (N log N) either way since it requires sorting. This is borderline acceptable
for N < 10%. Can we do even better?

There are two ways forward. One is through clever use of data structures. Sweep
through the sequence one element at a time left-to-right and keep track of what elements
we haven’t removed yet (call this sequence P). If the next element in the sequence is greater
than the last element of P, we know that the last element of P should be reduced either
with the new element or the second last element of P, until the new element is smaller than
the last element of P. Then, we add the new element to P. Once we run out of elements,
we start performing reduction operations using the last two elements of P until we only
have a single element left.

The other way is much cleaner, and involves looking at yet another extremal value: the
greatest element. Consider all the elements to the left and right of it. It must be optimal to
first reduce all of them to a single element before reducing them with the greatest element.
If there were two elements a;, a; to the left and we reduce both of them together with the
greatest element, we could lower the cost by first reducing them with each other. This
gives us yet another solution - find the greatest element, perform the reduction of the
intervals to the left and right of it, and then perform the final reductions. But this is not
the solution we are after, for it too is ®(Nlog N) if implemented in the straightforward
manner”.

Instead, look at the second largest element, located, say, to the left of the greatest
element. By the same reasoning, it too is reduced with twice, except if it is adjacent to the
greatest element since there would be no elements in between them to be reduced with the
second greatest element from the right. This is true for the third greatest element too, i.e.
it is reduced with twice except if it is adjacent with one of the other two greater elements,
for the same reason. The third greatest element might even be reduced with zero times
if it is adjacent to both the greatest and second greatest element! In fact, if we keep this

21t is possible to do this in linear time, but showing that solution would turn this chapter into one on data
structures. Look up Cartesian trees if you are interested.

158

10.3. SORTING AND EXCHANGES

reasoning going, we see that the i’th greatest element is reduced with:

o twice, if the adjacent elements are smaller,

« once, if only one adjacent element is smaller, or

« never, if both adjacent elements are greater.
This is simply the same number of times as there are smaller elements immediately adjacent
to it, so this gives us a linear time solution. An alternative way of formulating this is that

for every adjacent pair of elements a;, a;1, the larger of them should be added to the
cost. O]

After looking at the previous problem one can almost wonder if it's possible to not solve it
since an algorithm fell out wherever we looked.

Problem 10.5.

Fishmongers fishmongers
Frosh Week froshweek2
Assigning Workstations workstations

10.3 Sorting and Exchanges

Many greedy problems involve performing some set of actions in an optimal order, or
arranging a sequence in an optimal way. A standard way of attacking them is to define some
measure for each action or element and assume that the correct ordering is to sort them
by this measure. This is not surprising, since sorting is exactly what you get by repeatedly
making locally optimal choices corresponding to the lowest measure value - remember the
extreme value principle! Normally you come up with a reasonable measure by intuition,
and prove its correctness by showing that any unsorted solution can be improved by
swapping two out-of-order elements. When this is the case the sorted sequence must be
optimal - it is the only one that can not be improved by swapping out-of-order elements.

This technique of showing that a non-greedy solution can be improved to what the
greedy solution produces is a so-called exchange argument. It is what we used to prove
that an optimal solution to the coin change problem could be transformed to the greedy
choice. Back in Basin City when studying brute force algorithms we used an exchange
argument to show that a drone could always be placed on either a given intersection or
two of its neighboring intersections — exchange arguments do not only belong in greedy

problems.
Minimum Scalar Product — minimumscalar
Google Code Jam 2008, round 1A. CC BY 3.0
You are given two vectors vi = (x1,X2,...,%s) and v2 = (y1, ¥2, ..., ¥») where n < 200. The scalar

product of these vectors is a single number, calculated as x1y1 + X2y2 + -+ + X Y.

159

https://heap.link/problem/fishmongers
https://heap.link/problem/froshweek2
https://heap.link/problem/workstations
https://heap.link/problem/minimumscalar

CHAPTER 10. GREEDY ALGORITHMS

Suppose you are allowed to permute the coordinates of each vector as you wish. Choose two
permutations such that the scalar product of your two new vectors is the smallest possible, and
output that minimum scalar product.

Solution. Mathematical intuition says: big numbers multiplied by big numbers give big
products, while big numbers multiplied by small numbers give small products. This
suggests that the best solution is given by sorting one permutation in ascending order and
the other one in descending order. To prove it correct, we use an exchange argument.

Suppose x; < x; < -+ < x,,, and the optimal permutation of y; is not in descending
order. Then there are exists i < j such that y; < y;. These two elements contribute to the
scalar product with the terms x; y; + x;y;. What happens if we swap their places? The new
contribution becomes x;y; + x;y;. The change to the scalar product is

(xiyj+xjyi) = (xiyi + xjy;) = (xi = x;)(yj = yi) <0

since x; — x; < 0 while y; — y; > 0. The exchange did not increase the scalar product, so
this new solution is at least as good. This means that given any solution - including the
optimal - we can transform it to the greedy one without making it worse, so the greedy
solution is optimal too. O

The solution is not exactly of the form that was promised. We gave a sequence of
concrete changes from the optimal to the greedy solution, instead of claiming that only the
greedy solution could not be improved by an exchange. This is because the new solution
was not necessarily strictly better. To avoid this, we could have started with the assumption
that the y; was the optimal solution that required the fewest number of swaps to make
it sorted. If that number was not 0, the swap would give us a solution just as good that
required even fewer swaps, a contradiction.

A word of caution before we move on. Exchange arguments of this kind do not always
work, even when the correct solution is one where we sort according to some measure. There
may be several so-called local optima that can not be improved by such swaps. In these
cases, other proof techniques must be used.

In the next problem, we are going to use a slightly weaker form of the exchange
argument, where we instead prove that any solution not sorted according to our measure
can be improved by swapping two adjacent out-of-order elements. The same thing applies:
this is not always strong enough. There are problems with local optima when swapping
adjacent problems, but where swapping arbitrary elements is sufficient.

Exercise 10.6. Consider the following problem: given a set of integers A, find an ordering
ai, ay, ..., a, that minimizes |a; — ay| + |a, — as| + ... |an—1 — a,|.

1. Prove that an optimal solution is to take the a; in ascending order.

160

10.3. SORTING AND EXCHANGES

2. Find a set A and a solution candidate that can not be improved by swapping two
adjacent out-of-order elements, but can be improved by swapping to arbitrary
out-of-order elements.

3. Find a set A and a solution candidate that can not be swapping any two out-of-order
elements.

The measure can be more complicated than just the element itself as in Minimum Scalar
Product. Elements might be pairs of numbers where we have to compare their differences,
products or quotients with each other. The sorting and exchange argument is not always
the entire answer either, but often just provides us with an ordering of something used
later in the problem.

Citations - citations
By Fredrik Hernqvist. Baltic Olympiad in Informatics 2018, practice session
Grace is going to read a certain scientific book. However, she is very careful about always reading
the sources that books refer to, and also the sources of the sources, and so on. The librarians are
constantly complaining about Grace’s excessive borrowing of books, so she now wants to find an
order in which to read the books that minimizes the total borrow time.

There are N < 100000 books that she eventually will need to read, the i’th takes k; minutes
to read and has a citation list with f; < N books. Before starting with book 1 Grace has already
borrowed all N books.

When Grace reads a book she opens the book and reads the citation list, which takes a minute,
then she reads all the books that are in the list in some order of her own choosing, thereafter she
reads the actual book and returns it to the library, which takes k; minutes.

Every book except book 1 will occur in exactly one citation list. Compute the minimum sum of
the borrow times for all books, given that Grace reads the books in an optimal order.

Solution. The best approach is to reason about the citations of book 1. We already know
for how long we must borrow book 1 - it is the sum of how long it takes to read all its
citations recursively plus the time it takes to read the book itself plus 1 (for reading the
citation list). This same applies to its citations as well, since the problem stipulates that
once she opens a book she reads all its citations recursively, followed by the book itself.

When choosing the order to read the citations of book 1 in, we have two conflicting
greedy ideas. On one hand, we want to read books with smaller total reading time earlier
since each minute spent reading a book when there are B books waiting contributes B
to the sum of the borrow times. On the other hand, we want to read books with many
recursive citations earlier since each minute a book with C recursive citations is waiting
contributes C to the sum of the borrow times. The difficulty in the problem lies in finding
the balance between these two factors.

Note that these are the only factors in selecting the order in which the citations should
be read. More formally, assume that the first book has k citations where the i’th takes b;

161

https://heap.link/problem/citations

CHAPTER 10. GREEDY ALGORITHMS

total borrowing time to read (if we only read this book), ¢; total reading time, and has c;
recursive citations. The total borrowing time of those books are then

b1+[tl'C2+b2]+[(t1+t2)'63+b3] + .-

Notice how the b; terms are not affected by the ordering of the books, so we only care
about minimizing the expression

[tl . C2:| + [(tl + tz) . C3] + [(tl + 1t + t3) . C4] + e

Appealing to the exchange argument, swapping two adjacent books i and i;,; improves
this sum if and only if t;¢;41 — tiz1¢; > 0 (this is the difference between the two sums when
the books are swapped). This is equivalent to t;c;+1 > t;41¢; Or % > %, so we should sort
the elements by this quotient in ascending order?. This also correspond with our initial
intuition - the quotient is smaller the more citations and the lower total reading time a
book has.

The same rule for ordering citations for book 1 of course applies to every other citation
list too. What remains is to recursively compute the values b;, t;, ¢; for each book and use

the formula given to compute the total borrowing time. O

Problem 10.7.

Toflur toflur
Swap Space swapspace
Distributing Seats distributingseats

10.4 Intervals

We move on two standard greedy problems, both about intervals: scheduling and covering.
Variants are common in algorithmic problems, but the basic ideas are the same.

Scheduling

Scheduling is a class of problems dealing with constructing large subsets of non-overlapping
intervals from some given set of intervals. The scheduling problem in its classical setting
is the following.

Interval Scheduling - intervalscheduling
Given a set of half-open (being open on the right) intervals S, find a largest subset of non-overlapping
intervals.

Solution. As is often the case with greedy constructions, we add intervals to the subset
one at a time. After choosing an interval, we remove all the intervals it overlaps with and

3When implementing the sort, use a custom comparator where you compare the products instead, to avoid
precision issues with doubles.

162

https://heap.link/problem/toflur
https://heap.link/problem/swapspace
https://heap.link/problem/distributingseats
https://heap.link/problem/intervalscheduling

10.4. INTERVALS

[
[

—
—

01 2 3 4 5 6 7 8
— B B

Figure 10.1: An instance of the scheduling problem, with the optimal solution at the bottom.

~

repeat the process until we run out of intervals. To find the interval that should be added,
we now know to apply the extreme value principle. Some reasonable ideas for a locally
optimal choice are for instance:

« ashortest interval,
o an interval overlapping as few other intervals as possible,
« an interval with the leftmost left endpoint, and

« an interval with the leftmost right endpoint.

In the above list, the first option - a shortest interval - might seem like it should be
the least disruptive. It’s not a stupid choice, but unfortunately it’s not optimal due to the
counterexample [1,3),[2,4),[3,5). It does produce a not too bad solution:

Exercise 10.8. Show that always choosing the shortest interval picks a subset at least half
the size of the optimal solution.

Does this mean that the second choice is better, since it overlaps very few intervals?
It’s harder to disprove and is actually true for all optimal solutions smaller than 4 intervals.
The idea for a counterexample is the same kind of overlapping that made the shortest
interval sub-optimal, plus adding lots of intervals we would never want elsewhere to force
the sub-optimal interval to be chosen. The third choice on the other hand is just bad - it
could choose a single interval overlapping every other - but at least it’s on the right track.

As it happens, the fourth choice is optimal. In the example instance in Figure 10.1,
the strategy results in four intervals. First, the interval with the leftmost right endpoint
is the interval [1,2). If we include this in the subset, the intervals [0, 3) and [1, 6) must
be removed since they overlap [1, 2). Then, the interval [3,4) would be the one with the
leftmost right endpoint of the remaining intervals. This interval overlaps no other interval,

163

N

DI N]

CHAPTER 10. GREEDY ALGORITHMS

so it should obviously be included. Next, we would choose [4, 6) (overlapping with [4,7)),
and finally [7, 8). Thus, the answer would be {[1,2),[3,4),[4,6),[7.8)}.

The optimality proof is a simple exchange argument. Assume that it’s not optimal to
choose the interval [], r) with smallest 7. Let [I”, ") be the interval with the smallest r’
of those that were chosen in the optimal set (so that 7’ > r). Every other interval in the
solution then has a left endpoint that is to the right of #’. These intervals don’t overlap
with [1, r) either, so we can exchange [1’,7") with [I, r) to obtain a valid solution of the
same size as well.

The implementation strategy suggested earlier - finding the right interval and removing
all the overlapping ones from S — is ® (N?) in the worst case (N is the number of intervals).
If we instead walk through the intervals sorted by their right endpoints we can “lazily”
remove them by only keeping track of the last added interval and throw away intervals
that don’t lie completely to the right of it. This approach is @(N log N):

: procedure INTERVAL SCHEDULING(S)

sort S by right endpoint
rightmost < —oo
for each interval [1,7) in S do
if | > rightmost then
add [1,r) to the answer
rightmost < r 0

Exercise 10.9. A variation is to instead choose K disjoint subsets of non-overlapping
intervals, maximizing the total number of intervals chosen. The solution is similar - we
should always include the interval with the leftmost right endpoint in one of the subsets if
possible. The question is, which subset? Intuitively, we should choose a subset the new
interval causes as little “damage” as possible. This turns out to be the subset with the
rightmost right endpoint (that the interval can be placed in). Prove that this strategy is
optimal.

Exercise 10.10. In neither of these two scheduling variants have we given any thoughts on
how to break ties for intervals with the same right endpoint when sorting them. It turns
out that the order does not matter.

1. Prove this for the normal scheduling problem.

2. Prove this for the scheduling variant with K subsets.

Exercise 10.11. To find the smallest K such that all the intervals can be divided into K
disjoint non-overlapping subsets, we could binary search over K (see Section 12.3) and
use the previous algorithm. A simpler solution is possible: do the same as in the previous
solution, but add a new subset whenever you can't place the next interval in one of the
existing subsets. The answer is then the number of intervals used. Prove that this strategy
is optimal.

164

1:

N

10:
1
12:
13:
14:
15:

L ® N 22w B

10.4. INTERVALS

Problem 10.12.
Entertainment Box entertainmentbox

Disastrous Downtime downtime

Interval Covering

Interval covering is the cousin of scheduling where we instead want to fill up an interval
completely.

Interval Covering
Given a set of half-open (being open on the right) intervals S, and an interval [L, R), find the
smallest subset of intervals such that their union includes the entire interval [L, R), or determine
that this is impossible.

Solution. Some interval must cover the point L. Of all the intervals we could choose that
covers L there is only one natural greedy choice - the one that extends as far as possible to
the right. A formal proof that this is optimal uses an exchange argument similar to the
one we did for scheduling.

To implement this method faster than ®(N?) we use a strategy similar to how we
solved the scheduling problem. First, sort the intervals by increasing leftmost endpoint.
We can then find all intervals overlapping L by iterating through the list until we find a
leftmost endpoint to the right of L. If the rightmost endpoint among these is X, that’s the
interval we choose. The problem is then again an interval covering problem, but for the
interval [X, R). The remaining intervals are already sorted, so we can just repeat the same
procedure (but for intervals overlapping the point X) until the whole interval is covered.

In total, this too is @ (N log N') with a slightly more complicated implementation:

procedure INTERVALCOVER(S, L, R)
sort S by left endpoint
i< 0
while L < Rdo
best] < -1
bestR « —oo
while i # S.size and S[i].left < L do
if S[i].right > bestR then
bestR « S[i].right
best] « i
i< i+1
if best] = -1 then
return impossible
add S[bestI] to the cover
L < bestR 0

165

https://heap.link/problem/entertainmentbox
https://heap.link/problem/downtime

CHAPTER 10. GREEDY ALGORITHMS

Exercise 10.13. What changes must be made to the algorithm above if the intervals in §
are closed intervals and the interval to cover is instead [L, R]?

Problem 10.14.

Interval Cover intervalcover
Watering Grass grass
Keyboards in Concert keyboardconcert

10.5 Constructions

Constructive problems ask us to produce some kind of configuration that satisfy constraints
given in the problem. They are often mathematical objects such as colourings of a grid,
graphs or sequences. There are as many ways to solve construction problems as there
are problem solving techniques, but greedy (and as we see in Chapter 12, recursive)
constructions deserve special attention since they are quite common.

Bonbons - bonbons
SANDVIK Challenge 2020
Ylva loves bonbons, probably more than anything else on this planet. She loves them so much that
she made a large plate of R - C (R, C < 1000 with R, C even) bonbons for her fikaraster”. To serve
them she will place them on a wooden tray with R rows of C bonbons each.
The bonbons are of three different kinds, of which she has a, b and ¢ bonbons respectively
(a + b+ c =R-C). When filling the tray with bonbons, no bonbons of the same kind may be
immediately horizontally or vertically adjacent.
Can you help Ylva place her bonbons on the tray, or determine that it is impossible?

ac

Fikarast” is a Swedish word, meaning to take a break from work while enjoying coffee and pastries together
with your colleagues.

Solution. Bonbons is a tricky problem where contestants came up with all kinds of incor-
rect greedy solutions during the contest it was part of. It is very easy to generate ideas
but surprisingly hard to both find counterexamples against the bad ones and prove the
correctness of the right ones.

Whenever constructions can be impossible to create, we first need to find out under
what conditions it's impossible. Most of the time this is as simple as trying out a greedy
construction and seeing if it fails. Only when we need to understand the impossibility
constraints to come up with a greedy algorithm are we forced to figure this out beforehand.
In this case, an obvious necessary condition is that there can’t be more than % bonbons
of any kind. There would then have to be more than < bonbons on some row, but then
two bonbons would be next to each other.

The first step towards a solution is a natural decomposition of the grid squares into
those with an even or odd coordinate sum respectively, forming two chequered patterns.
Bonbons placed in one of those patterns do not affect each other, so this gives us a lot of

166

https://heap.link/problem/intervalcover
https://heap.link/problem/grass
https://heap.link/problem/keyboardconcert
https://heap.link/problem/bonbons

10.5. CONSTRUCTIONS

freedom in deciding what bonbons to place in a single pattern. When filling the first of
these patterns, it is probably a good idea to place as many bonbons of the most common
kind close to each other. This leaves many “gaps” in the other pattern in which any bonbon
of the other two types could be placed. Following this, we should probably try to place
as many bonbons of the second most common kind and putting the leftovers into the
beginning of the second pattern. It should be possible to completely use up all those
bonbons, since the most common kind should have left more gaps than there are bonbons
of the second kind. If we manage to do this, all the remaining free spots must be in the
second pattern, since the first two together must fill the entire first pattern. This means
that the last kind can be freely placed, finishing up the construction.

While this all sounds good and intuitive, it is also slightly incorrect with a trap many
contestants fell into. A counterexample is givenby R =2,C =6,a =5,b = 4, ¢ = 3. This
greedy choice fails after placing the fourth bonbon of type B. It can still be placed, just not
in that particular place:

ABABAB ABABA.
.A.A.B BA.A.B

Figure 10.2: The incorrect greedy construction, and a possible alternative.

Is this the end of this greedy approach? Luckily not - it turns out there is always somewhere
to place the remaining B bonbons once they overflow into the second pattern, just not
always in that particular order. The proof is a bit of math. First, assume thata > b > c.
Initially, the first pattern gets % — a B’s. This means that at most 2(% —a)=RC-2a
squares in the second pattern are adjacent to a B, leaving % — (RC - 2a) spots left. For
this to be enough, we must have that

b—(Rz—C—a)§§—(RC—2a).

We simplify a few times:
RC RC
bS7—(RC—2a)+(7—a):RC—(RC—Za)—a:a

which is true by assumption, so the construction works as long as try to use all available
squares in the second pattern to add the extra B’s. O

In the problem, we used some kind of principle of minimal disruption: the A bonbons
were initially placed in such a way that they disrupted each other - and the placement
options for other bonbons - as little as possible to produce as much freedom as possible for
future placements. This is a very common idea in greedy construction problems (which
Scheduling actually is an instance of too). It also guides us towards a greedy strategy in
the next problem, which requires quite some effort to prove correct.

167

CHAPTER 10. GREEDY ALGORITHMS

Box of Mirrors — boxofmirrors
By Martins Opmanis. Baltic Olympiad in Informatics 2001
On an N x M grid, each square is either empty or contains a mirror placed diagonally from the
top-right corner of the square to the bottom-left corner. From the four sides of the grid, a laser beam
is fired right into the center of each row and column for a total of 2(N + M) beams. When a beam
hits a mirror, it is reflected and changes direction by 90 degrees.

Figure 10.3: An example of how a beam travels when hitting mirrors.

For each beam, you record from what square it exits the grid. Given this information, find a possible
placement of mirrors in the grid.

Solution. Knowing where to start in this problem might be the hardest part. There is no
obvious way to place mirrors greedily, so we have to make one up. The right idea is to
fire all the beams from the left and from below in some smart order, and place mirrors
greedily in a way that makes the beans exit in the right place. Note that beams fired from
these two sides travel only upwards and rightwards, so they all exit through the other two
sides.

The right order turns out to be processing the rows top to bottom, followed by the
columns left-to-right. This makes some sense. The first beam we place can only utilize a
single mirror, and the position it gets is forced entirely forced. On the other hand, if we
start with the beam on the bottom-most row, we have a lot of freedom in where to place
mirrors. It then becomes hard to know where they should be placed in order to minimally
disrupt the mirrors we must place for other beams.

Once we trace the beam along the second row, things are not as straightforward. If the
beam needs to be routed upwards to reach its target, there are a lot of ways to do so. We
can look for guidance in the extreme value principle. Some possible choices on where to
route the beam upwards would be for example as early as possible or as late as possible.
Both of them are terrible. It might be the case that they result in placing a mirror in the
first or last column. If the beams on those columns are supposed to pass straight through

168

https://heap.link/problem/boxofmirrors

10.5. CONSTRUCTIONS

the box to the other side, we have just obstructed that goal.

Can we avoid this problem? Yes — we can, without disrupting any of those column
beams, try to redirect the beam upwards in those columns that already have a mirror. If
there are several such choices, we should pick the earliest one. The earlier we start forcing
the beam down, the longer we are able to, which gives the beam more freedom on what
row to exit on. Note, of course, that we only add these mirrors if a row is supposed to
either exit at a higher row than it’s current position, or if it’s supposed to exit vertically
anywhere.

Aside from these mirrors, for each vertically exiting beam we also need to add a
final mirror forcing it upwards when it arrives horizontally in its target column. Highly
surprisingly, these are actually all the mirrors that need to be added. For an example of
the algorithm in action, see Figure 10.4.

Figure 10.4: An example of how the mirror placing algorithm works.

Exercise 10.15. Prove that when a given beam is being traced through the grid, the mirrors

169

CHAPTER 10. GREEDY ALGORITHMS

it causes to be placed never disrupt the path of one of the earlier traced beams.

The statement that we need no more mirrors raises a few big questions.

o When a beam exiting vertically reaches its target column, can there already be a
mirror in the way on its path upwards?

« Can a beam accidentally exit through the top because there were no mirror to stop
it?

« Don’'t we need any mirrors to make beams exiting horizontally leave at the right
row?

The first question is straightforward to answer. Assume that we are tracing a beam
that wants to exit upwards somewhere, but there is a mirror in the way. We only place
mirrors in a column for two reasons: either there is already a mirror there, or a beam
passed through the column horizontally but needed to exit in that column. Thus, a beam
can only be blocked in the column if another beam already wanted to exit in the column -
a contradiction.

We can now prove that all beams that are to exit through the top does so correctly. By
construction, all of those beams exit upwards — we always add a mirror forcing it upwards
when the beam passes through the correct column, and we now know the beam won’t be
blocked. A beam can also never exit in the wrong column. Assume to the contrary that
there are beams leaving through the wrong column, and consider the first one, leaving
through column ¢. The beam actually meant to leave through ¢ must have exited through a
column ¢’ > ¢ instead, but then it passed column ¢ - and by the previous question, would
have been able to exit through the column. This answers the second question - no two
beams can exit through the same hole, so no extra beam can accidentally exit vertically.

The last question is the trickiest one. We now know that all horizontally exiting beams
leave through a hole to the right, but need to prove that they can not exit through the
wrong row. It is a good exercise to prove that this can’t happen. O

Exercise 10.16. Prove that all beams exit through the correct row after the above algorithm
has placed all mirrors.

Exercise 10.17. We said that rows must be processed top-to-bottom followed by columns
left-to-right. It might seem more natural to process columns right-to-left, by the same rea-
soning for why starting with rows bottom-to-top was bad. Is the column order necessary?

1. Find an example where processing columns right-to-left fails.

2. What step in the proof required that columns were processed in this order?

Interestingly enough, the official solution booklet from the contest in which the prob-
lem appeared did not even mention this last possibility, i.e. that horizontal beams exit

170

10.5. CONSTRUCTIONS

through the incorrect rows. Perhaps they thought it was obvious, but we think it’s the
most difficult part of the correctness proof.

Problem 10.18.

Espresso Bucks espressobucks
Hard Drive harddrive
ADDITIONAL EXERCISES

Problem 10.19.

Intergalactic Bidding intergalacticbidding
Left and Right leftandright
Marathon marathon
Saving the Universe savinguniverse
Messages from Outer Space messages
Hyacinth hyacinth
Classrooms classrooms
Inflation inflation
Matchsticks matchsticks
Poplava poplava

Cu Chi Tunnels cuchitunnels
Cake cake

Canvas Line canvasline
Boiling Vegetables vegetables
Wireless is the New Fiber newfiber
NoOTES

Determining whether coins of denominations D can even be used to construct an amount
T is an NP-complete problem in the general case [31]. It possible to determine what cases
can be solved using the greedy algorithm described in polynomial time though [9]. Such
a set of denominations is called a canonical coin system.

Introduction to Algorithms [11] also treats the scheduling problem in its chapter in
greedy algorithms. It brings up the connection between greedy problems and a concept
known as matroids, which is well worth studying.

In this chapter, we only studied greedy algorithms that give an optimal solution. For
many NP-complete problems, there are greedy algorithm that gives good approximations,
producing solutions always within a some small factor of the optimal one.

171

https://heap.link/problem/espressobucks
https://heap.link/problem/harddrive
https://heap.link/problem/intergalacticbidding
https://heap.link/problem/leftandright
https://heap.link/problem/marathon
https://heap.link/problem/savinguniverse
https://heap.link/problem/messages
https://heap.link/problem/hyacinth
https://heap.link/problem/classrooms
https://heap.link/problem/inflation
https://heap.link/problem/matchsticks
https://heap.link/problem/poplava
https://heap.link/problem/cuchitunnels
https://heap.link/problem/cake
https://heap.link/problem/canvasline
https://heap.link/problem/vegetables
https://heap.link/problem/newfiber

CHAPTER 10. GREEDY ALGORITHMS

172

1
2:
3:
4

CHAPTER 11

Dynamic Programming

It is time to tie up some loose ends when it comes to search and optimization problems.
So far, we have seen problems where we could formulate recursions (Chapter 7), where
we needed to exhaustively try all recursive choices to solve them (Chapter 9) and just
now problems where we just guessed (and hopefully proved) what choice was correct
(Chapter 10).

Sometimes, we mentioned in passing that recursions could be solved in linear time.
In other problems we had to resort to the exponential complexity of backtracking. This
chapter explains when the specific approach we have used to avoid backtracking (with-
out resorting to greedy algorithms) work. It’s one of the most important paradigms in
algorithmic problem solving — dynamic programming.

We begin with a familiar example, the change-making problem with a different set of
denominations, and follow up with a lot of standard problems and techniques.

111 Making Change Revisited

In the previous chapter, we solved the change-making problem with denominations 1, 2,
and 5 greedily. The best choice of coin for a given T was always the greatest one that didn’t
exceed T. After getting your hopes up, Exercise 10.2 asked you to prove that the case with
coins worth 1, 6 and 7 could not be solved in the same greedy fashion.

So, how is this variant solved? Well, you already know how to solve the 1, 2, 5 case
non-greedily in linear time. Formulate the recursion

Change(T-1) ifT>1
Change(T) = 1+ min{ Change(T -6) ifT>6 (11.1)
Change(T-7) ifT>7

with base case Change(0) = 0 and solve it iteratively in the way that we showed in Chapter 7.
The code was pretty simple, storing the answers in an array as we go along:

procedure CHANGEMAKING(integer T)
answers < new array of size T + 1
> base case
answers[0] < 0

173

CHAPTER 11. DYNAMIC PROGRAMMING

fori=1- T do
answers[i] < 1+ answers[i — 1]
if i > 6 then
answers|[i] < min(answers[i], 1+ answers[i - 6])
if i > 7 then
answers|i] < min(answers[i],1+ answers[i — 7])

return answers[T

Problem 11.1.
The Gourmet gourmeten (all subtasks)

What makes the iterative computation able to speed up this particular recursion from
exponential to linear, but we can’t do the same for e.g. the max clique problem? The
theoretical answer is that recursions allow a space-time trade-off where we can reduce
the time complexity to the number of subproblems we recursively solve, multiplied by the
time it takes to solve a single subproblem. For change-making, we need to solve up to
T + 1 subproblems in total, and each subproblem is a constant amount of work. In the
backtracking problems, there were simply an exponential number of subproblems. For
max clique, we had to go through all vertex subsets to see if they were cliques. To count
the number of subproblems, look for how many different values the parameters to the
recursive function can take. The space trade-off is that we must save the answers for each
subproblem.

This property distinguishing the recursions that can be sped up using the iterative
method from those that can’t is in the theory called overlapping subproblems. It is a fancy
term that means “during backtracking, you call your recursive procedure with the same
parameters many times”. Generating subsets does not revisit the same subproblem, so the
technique does not help. Change-making revisits the same subproblem an exponential
number of times, so the technique gives us an exponential speedup.

Exercise 11.2. For the following recursive functions, determine whether their subproblems
overlap (i.e. will be called multiple times with the same arguments).

1: procedure FiBoNAccCI(integer i)
2: if i <2 then
3: return i

4 return Fibonacci(i — 1) + Fibonacci(i - 2)

2: procedure DFS(vertex v, array seen)

2 seen[v] < true

3 for all neighbors u to v do
4 if not seen[u] then

5 DFS(u)

3: procedure POWER(real b, integer e)

174

https://heap.link/problem/gourmeten

N

@

11.2. PATHS IN A DAG

2: if e = 1 then
3 return b
4 returnPower (b, | £ |) - Power(b,[£])

This is essentially all that dynamic programming, or DP is. You take a problem that
admits a self-recursive solution (i.e. it can be solved by reducing it to smaller instances
of itself) and compute each subproblem exactly once. If a subproblem is indirectly used
many times during a recursion, you win time.

As an intuitive mental model, this explanation is not very good. It doesn't tell you when
you should go for a recursive solution because you can apply dynamic programming, or
what recursion you should choose to make it work. The remainder of the chapter describes
a range of ways in which you can think about recursion to find DP solutions.

1.2 Pathsin a DAG

The standard problem for dynamic programming problems is about paths in a directed,
acyclic graphlongest directed acyclic graph, a DAG. In Section 8.6 we learned how to
topologically order the vertices of a DAG, so that every edge points from a later vertex to
an earlier vertex. While this problem is important in its own right, it’s also valuable to study
in order to understand DP. As we soon see, the topological ordering carries importance
for DP.

Longest Path in a DAG - longestpathinadag
Given a directed, acyclic graph, find a longest path in it.

Solution. This problem is best approached with the framework for recursive choices that
we developed in Chapter 7. Consider the longest path p; — p, — --- - p; in the graph.
The path must start at a vertex, in this case p;. Now channel your inner Tasha the kitty
(page 99) and ask: what is the first edge on this longest path? This can be any one of those
that point out from p;. We should pick the edge p; — v such that the longest path starting
at v is as long as possible. Any path that starts at v can be extended with one more edge
p1 — v, so the longest path starting at v plus this edge is the longest path starting at p;.
This gives us the recursion we are after:

: procedure LONGESTPATH(vertex v)

length < 0
for each out-edge v — u do
length = max (length, LongestPath(u) + 1)

return length

The length of the overall longest path is then max, LongestPath(v).

175

https://heap.link/problem/longestpathinadag

1:

N

R I

CHAPTER 11. DYNAMIC PROGRAMMING

To avoid computing LongestPath(v) for the same v an exponential number of times,
we use the iteration trick of computing it for each v in...increasing order? Hmm, this
recursion is clearly more complex than the previous ones. In the recursions seen so far we
could find a simple ordering of the parameters to ensure that the recursive subproblems
had already been computed when we reached a subproblem.

We somehow need to find an ordering of the vertices such that whenever there is an
edge v — u, the answer for 4 must have been before that of v. A-ha! That’s exactly what a
topological ordering guarantees us. We thus need to first find this ordering before we can

iteratively compute the recursion:

procedure ITERATIVELONGESTPATH(vertices V)
answers < new array of size V .size
order < TopologicalOrder(V)
for v in order do
for each out-edge v — u do
answers[v] = max(answers[v], answers[u] + 1)

return the maximum of length

The above pseudo code is @(V + E) for V vertices and E edges - the innermost loop does
constant-time work and loops once over every single edge.

1+1

Figure 11.1: The length of the longest path starting at each vertex and how it is computed.

We have cheated a bit so far. The problem asked for the longest path, but we have so far
only computed its length. The reconstruction works just like the BFS reconstruction for
shortest path does. For each v, make sure to also store the edge v — u where u had the
longest path in another vector next. Given this, the reconstruction is easy:

: procedure LONGESTPATHRECONSTRUCTION(answers, next)

i < the index where answers is greatest
while answers[i] + 0 do
add i — next[i] to the path

i = next[i] 0

Exercise 11.3. The path can be reconstructed using only answers and the input graph. How?

176

N

B @

@ N 2w

11.2. PATHS IN A DAG

Memoization and Memory

Do we really need to find a topological ordering to recurse on the paths of a DAG? De-
pending on how experienced of a programmer you are, the answer no might be surprising.
The recursive function can be adapted slightly to avoid the exponential blow-up using
memoization or top-down dynamic programming (in contrast to bottom-up, which the
iterative computation is called). The idea is that since the recursive function returns the
same value every time it’s called, we can store the return value after the first call and
return it immediately for subsequent call. In software engineering, storing the results of
computations for later reuse is called caching. When applied directly to the return value of
a function in this manner it’s called memoization. Memoizing the function for the longest
path in a DAG looks like this:

: memo < new array of size V filled with -1
: procedure LONGESTPATH(V)

if memo[v] # -1 then
return memo[v|
length < 0
for each out-edge v — u do
length = max(length, LongestPath(u) + 1)

return memo[v] = length

The return values for the function is stored in memo, which is initially filled with a sentinel
value —1 that allows us to distinguish between values for which the function has been
computed and those not yet called. When the answer is always non-negative, —1 is the
standard choice.

The benefit of memoization is twofold. First, we don’t have to find the topological
ordering of the function calls in the recursion. As we just saw, this ordering can need
an explicit topological sorting to construct. Secondly, with memoization the recursion
only calls the subproblems that can affect the answer we are interested in rather than all
possible ones. In some problems, we can win constant factors due to this. In extreme cases
an entire parameter can turn out to be unnecessary, such as in the Ferry Loading problem
in Section 11.3. When that happens, you normally need to realize it before coding though,
in order to reduce the number of states to something that fits in memory.

Problems on DAG paths are not uncommon in contests, and thanks to memoization
become easy to code. Typically, the solution - in fact, the solutions for most memoized
DP problems - looks very similar to the one we just showed you.

Problem 11.4.
BAAS baas
Safe Passage safepassage

Memoization is not without downsides. There are a lot of function calls in recursive

177

https://heap.link/problem/baas
https://heap.link/problem/safepassage

CHAPTER 11. DYNAMIC PROGRAMMING

solutions, and they carry some overhead. This problem is not as bad in C++ as in many
other languages, but it is still noticeable. When the number of states in your DP solution
is running a bit high, you might want to consider coding it iteratively. The performance
gain from avoiding recursion is normally greater than the benefit of not computing a few
unnecessary subproblems.

In top-down DP, the memory usage is for the most part clear and unavoidable. If a
DP has N states, the top-down solution uses ((N) memory to store all the states. For a
bottom-up solution, the situation is quite different. If we choose the order in which the
subproblems are computed well, we seldom need to store the answers to all of them all the
time. Consider e.g. the change-making problem again, which had the following recursion:

Change(T-1) ifT>1
Change(T) = 1+ min{ Change(T -6) ifT>6 (11.2)
Change(T-7) ifT>7

If we compute Change(T) for values of T in the order 0,1,2,3,. .., once the answer
for Change(k) has been computed, the answers for k — 7,k — 8, ... are never used again.
During the entire process, only the answers to the 7 last subproblems are needed. This ©(1)
memory usage is pretty neat compared to the ® (K) usage needed to compute Change(K)
otherwise. In the worst case, such as when recursion is over a general directed graph, this
doesn’t help.

Competitive Tip

Generally, memory limits are very generous nowadays, somewhat diminishing the art of optimiz-
ing memory in DP solutions. It can still be a good exercise to think about improving the memory
complexity of the solutions we look at, for the few cases where these limits are still relevant.

1.3 Standard Techniques

By now, you might have realized that a lot of what we discussed in these 3 last chapters
have very much in common with the mental model of recursion from Chapter 7. The
reason for this is very simple — that chapter was written to be the common ground for the
recursive search techniques to make them easier to talk about. Almost all the recursive
problems described in that chapter are susceptible to dynamic programming to get a
polynomial-time solution. In this section we look at some more complex recursions, but
the basic principles remain the same.

More Choices

We start with a variation of the classical stock trading DP problem.

178

N

AR A

11.3. STANDARD TECHNIQUES

Short Sell - shortsell

LiU Coding Challenge 2018
Simone is trading the cryptocurrency CryptoKattis, used to improve your Kattis ranklist score
without solving problems. She is very perceptive of online judge trends and noticed that many
coders are switching to the new online judge Doggo. She thinks that Kattis is falling out of fashion
which will cause CryptoKattis to decline in value. Careful market research allows her to estimate
the prices of a CryptoKattis in dollars during the next N < 100000 days denoted Py, ..., Py. She
intends to use this data to perform a short sell. One day she will borrow 100 CryptoKattis from a
bank and sell it for dollars. At a later day, she will purchase 100 CryptoKattis and repay her loan
to the bank. Every day between and including these two days, she must pay K dollars in interest.
What’s the maximum profit she can make by choosing these two days optimally?

Solution. On a given day, Simone has three choices: lend the CryptoKattis and sell them,
do nothing, or buy CryptoKattis to repay her loan. The correct question for a recursive
solution is: if she only performs the first two actions, what is the most cash C(i) she can
have on hand at the end of the i’th day? The profit she can make by selling on day i would
then be C(i) — 100P;, and to solve the problem wed take the maximum over all i. There
are three cases when computing C(i). If she has not bought CryptoKattis yet, the answer
is 0. If she has already bought she must pay interest today, so she loses K money from
the previous day’s maximum cash, i.e. C(i — 1) — K. This can also be the day she does the
short sell, giving her 100P; — K money. Together, these cases gives us the recursion

0
C(i) = max{100P; - K (11.3)
C(i-1)-K
DP solutions for recursions in only a single parameter are predominantly written

iteratively. This DP only depends on the answer for i —1, so we don't need an array to store
past results.

: procedure SHORTSELL(N, P, K)

C+0

profit < 0

for each price p in P do
C < max(0,100p - K,C - K)
profit < max(profit, C —100p)

return profit O

Exercise 11.5. Adapt the solution to Short Sell to the case where Simone is allowed to
perform several short sells, as long as they don’t overlap.

Problem 11.6.
The Stock Market borsen (all subtasks)

179

https://heap.link/problem/shortsell
https://heap.link/problem/borsen

]

Qv Row

CHAPTER 11. DYNAMIC PROGRAMMING

Radio Commercials commercials
Going to School skolvagen (all subtasks)

The following problem was one of the examples we gave on incorrect greedy algorithms.
We return to it now, as perhaps our first “real” dynamic programming problem that recurses
on more than one parameter.

Bookshelves — bokhyllor
By Arash Rouhani. Swedish Olympiad in Informatics 2012, School Qualifiers.
You are buying bookshelves to fit all your books. Books come in three sizes; a small book has width
1, a medium book width 2 and a large book width 3. Each bookshelf has the same width L < 20.
Given the amount of books you have (at most 20 of each size), compute the number of bookshelves
needed if the books are placed optimally on the shelves.

Solution. The first step in solving dynamic programming problems is to reformulate it in
the recursive “sequence of choices” form we are used to. In this problem, no choices are
given to us — we must define them ourselves.

How should you think when formulating recursive choices that are supposed to work
well with dynamic programming? The core idea is that after you recursively try some
number of choices, you arrive at a situation where the important thing is not what choices
you made, only their consequences. For example, in the change-making problem, when
solving a recursive subproblem T’ it's completely irrelevant which coins we picked to
get there. The optimal solution for the remaining T’ money is the same no matter if we
arrived there after recursively using 1000 coins of value 5 or 5000 coins of value 1. Not all
problems can be formulated in this way. For example, say that you try to find the longest
path starting at some vertex in a general graph using recursion. Is it enough to formulate
a recursive function LongestPath(v) that recursively tries what vertex next to visit? No!
The choices that the recursive function can make depends on previous choices, so this
does not work.

In this problem, we propose the following construction method. Fill each bookshelf
that we buy one at a time. At any given time, we have four choices. We might either place
a book on the current shelf (one choice per book type) or we can buy a new bookshelf.
During this construction, we need to keep track of only four things: how many books
we have yet to place of each of the three types and how much space we have left on the
current shelf. This results in the following recursion:

: procedure BOOKSHELVES(s, m, I, widthLeft)

if s=m=1=0then
return 0 > base case — we have no more books to place

answer « oo
if s > 0 and widthLeft > 1 then
answer < min(answer, Bookshelves(s — 1, m, [, widthLeft — 1))

180

https://heap.link/problem/commercials
https://heap.link/problem/skolvagen
https://heap.link/problem/bokhyllor

10:

11:

12:

11.3. STANDARD TECHNIQUES

if m > 0 and widthLeft > 2 then

answer < min(answer, Bookshelves(s, m — 1, [, widthLeft — 2))
if 1 > 0 and widthLeft > 3 then

answer < min(answer, Bookshelves(s, m, | — 1, widthLeft — 3))
if widthLeft < L then

answer < min(answer, Bookshelves(s, m,[,L) +1)

return answer
The function is invoked with Bookshelves(s, m, I,0) since we in the beginning need to
buy a first shelf. We have not added the memoization here, and will typically not do so in
this chapter to avoid cluttering - coding that is up to you.

Exercise 11.7. Why is the check for widthLeft < L needed on line 11?

To find the time complexity of the solution, we compute the number of valid parameter
combinations, called the states of the recursion. The values s, m, [only decrease and are at
least 0, while widthLeft is between 0 and L, so there are O(s-m - I - L) states. The function
itself takes constant time, so the number of states is also the total time complexity. ~ [J
Problem 11.8.

Dance Dance Revolution dansmatta
Nikola nikola

Note that the recursive construction method we used can construct every possible
placement of books on the shelves! When we impose a construction method we must
ensure that it covers the optimal possibility too! In difficult problems it’s sometimes the
choice of recursive construction that makes the solution fast enough, for example by not
testing certain states that can never be optimal. Different ways of looking at a problem can
give you a variety of recursions and parameters representing your subproblems. This next
example demonstrates the importance of choosing what parameters to include with care.

Ferry Loading - lastafarjan
By Oskar Werkelin Ahlin. Swedish Olympiad in Informatics 2013, Online Qualifiers.
A ferry is to be loaded with N < 200 cars of different lengths waiting to board in a long line. The
ferry consists of four lanes, each of the same length L < 60. When the next car in the line enters
the ferry, it picks one of the lanes and parks behind the last car in that line. There must be a safety
margin of 1 meter between any two parked cars.

181

https://heap.link/problem/dansmatta
https://heap.link/problem/nikola
https://heap.link/problem/lastafarjan

e 2N 2w

10:

CHAPTER 11. DYNAMIC PROGRAMMING

Figure 11.2: An optimal placement on a ferry of length 5 meters of cars with lengths 2,1,2,5,1,1,2,1,1,2
meters. Only the first 8 cars could fit on the ferry.

How many cars can park on the ferry if they choose the lanes optimally?

Solution. As a simplification, increase the initial length of the ferry by 1 to accommodate
an imaginary safety margin for the last car in a lane in case it is completely filled, and
increment the lengths of each car by 1 so that we don’t have to care about the safety margin
atall.

The problem is already given in the sequence of choices form that we know how to
translate to a recursion. We have an ordered list of cars and each one has 4 choices — one
for each lane it could go into. If a car of length m chooses a lane, the remaining length of
the chosen lane is reduced by this amount. After the first ¢ cars have parked on the ferry,
the only thing that has changed are the remaining lengths of the ferry lanes.

This suggests a DP solution with nL* states, each state representing the number of cars
so far placed and the lengths of the four lanes:

: procedure FERRY(car, lanes)

if car = N then
return 0 D> base case — we have no more cars to place
answer < 0
for i from 0 to 3 do
if lanes[i] > carLengths[car] then
newLanes < lanes
subtracting carLengths| car] from newLanes[i]
answer < max(answer, 1 + Ferry(car + 1, newLanes))

return answer

Unfortunately, memoizing this procedure would not be sufficient. The number of
states is 200 - 60* ~ 2.6 - 10, which requires gigabytes of memory.

To improve the solution, we think about what DP actually is. Dynamic programming
is all about taking a list of choices we made and compressing it to only the information that
can affect future choices - like ignoring what lane each car went into, instead only keeping

182

11.3. STANDARD TECHNIQUES

track of what cars remain and how much space is left. This removes information that is
redundant for the recursion. Our suggested solution still has some lingering redundancy
though.

In Figure 11.2 from the problem statement, we have an example assignment of the cars
2,1,2,5,1,1,2,1. These must use a total of 3+ 2+ 3+ 6 + 2 + 2 + 3 + 2 = 23 meters of space
on the ferry. Let U(c) be the total length of the first ¢ cars. This function is invertible —
two different ¢ always give different U(c). Let uy, uy, u3, uy be the total length of how all
the cars that have parked in each lane so far, so that U(c) = u; + up + u3 + u4. The four
terms on the right are parameters in our memoization together with c. The left one isn't,
but it is uniquely determined from ¢, which is a parameter.

This means that for some fixed values of lanes, there’s only a single possible value that
car can have. This means that we don’t need to include it as a parameter in the memoization
— it’s still fine to have in the recursion, since we use it. This simplification leaves us with
60* ~ 13000 000 states, well within reason. O

Problem 11.9.
Buying Coke coke

Interval DP

A common DP category is recursing over intervals of a sequence. Within an interval, we
often want to perform some action on a element within the interval and recursively solve
a problem on the two subintervals we get after splitting the interval at that element. First,
we show a problem that contains most of the elements an interval DP problem can have.

Zuma - zuma
By Goran Zuzi¢. Croatian Olympiad in Informatics 2009/2010, round 5

One day Mirko stumbled upon a sequence of N < 100 colored marbles. He noticed that if he touches
K (K < 5) or more consecutive marbles of the same color he could wish them to magically vanish,
although he doesn't have to do that immediately. When marbles vanish, the marbles to the left and
right of them will move towards each other and close up the hole formed. Note that Mirko needs to
touch marbles to make them vanish - there are no chain reactions.

Fortunately, Mirko brought an inexhaustible supply of marbles from home, so he can insert a
marble of any color anywhere in the sequence (even at the beginning or end). Find the smallest
number of marbles he must insert into the sequence to make all of the marbles vanish.

Solution. This task is mainly an exercise in finding the correct subproblem and method of
constructing a solution. The key idea is to study marble 1 in the sequence and ask what
happens to it. We could insert some marbles of the same color right at the start and remove
it. If that’s not the optimal solution, there must be another marble of the same color later
on in the sequence that, after removing all the intermediate marbles, is removed in the
same group as the marble 1.

183

https://heap.link/problem/coke
https://heap.link/problem/zuma

CHAPTER 11. DYNAMIC PROGRAMMING

If that marble is the i’th one, we must clear the entire interval of marbles [2,i —1]
before 1and i can touch (as we assumed should happen). Solving the interval [2, i — 1] is
independent of what we do in the rest of the sequence. We don’t know what i is the correct
one to test, so we loop over all choices and take the best one. This is how most interval DP
solutions work: within an interval, split it into two by looping over all possible “breaking
points”

After deciding to merge with the ’th marble, we still have to solve the interval [i, N,
now with that extra marble 1. Furthermore, there might be some marble j > i that is also
supposed to be part of the group used to vanish marble 1. Then we must clear the interval
[i +1, j — 1], and solve the remainder of the interval [j, N], where we now have two extra
marbles of the same color as j.

Note that there are only three things that varies in our process: the two endpoints
of the interval and the number of marbles we accumulate immediately to the left of
the interval. It seems like the correct subproblem is: “how many marbles M(I,7,s)
must be added to clear the interval [1, r] if we have s marbles of the same color as the
I'th immediately to the left of it?” The first step of the recursion is then the expres-
sion min; ;., M(1 +1,i—1,0) + M(i,r,s + 1) where the i’th and I’th marbles must have
matching color.

M(L,N,0) = M(j,N,2) =

M(i,N,1) + M(2,i-1,0) M(j+1,N,0) + (K - 3)

00 OO0 W
M(i,N,1) =

M(j,N,2) + M(i+1,j-1,0)

Figure 11.3: A visualization of the Zuma recursion. Marbles 1, i and j are to be merged. The rest of the
interval is split up into three independent intervals that are solved recursively.

The other part of this process is vanishing marbles. At some point when solving
a subproblem M(I,r,s), the right answer might be that the I’th marble should not be
merged with anything in [I + 1, 7]. We must then insert K — 1 — s extra marbles, to get a
group of K. This is the second part: M(I +1,7,0) + K —1 - s. Note that if s > K — 1 this
would be negative. This means that we never need to increase S beyond K -1, so we cap it
at that in our recursion.

The DP has N?K states taking ®(N) time, for a complexity of ®(N>K). O

Sometimes we do DP on circular intervals. This is done slightly differently.

184

11.3. STANDARD TECHNIQUES

Running Routes - runningroutes
By Nathan Mytelka. 2019 ICPC North American Qualifier Contest. CC BY-SA 3. Shortened.
Polygonal School wants to increase enrollment, but they are unsure if their gym can support having
more students. The gym floor is a regular n-sided polygon, affectionately called P. The coach has
drawn several running paths on the floor. Each path is a straight line segment connecting two
distinct vertices of P. During gym class, the coach assigns each student a different running path.
The coach does not want students to collide, so each student’s path must not intersect any other
student’s path, even at their endpoints.
Given all the paths, find the size of the largest non-intersecting subset.

Solution. If we solved the problem on a line, there would be little difference between this
problem and Zuma. The relevant subproblem would be counting the maximum number of
paths R(I, r) within the interval [, r]. For such a subproblem, there are two possibilities.
Either [is the first endpoint of a path and some I < i < r is the second, whereupon all
remaining paths must lie either in [/ +1,i —1] or [i + 1, 7] to avoid crossing the path | < i
- note the two disjoint subproblems that arose - or it is not. In that case, all intervals lie in
[1+1, r]. Therecursionis thus R(I,r) = max(R(I+1, 1), max; ;<. {R(I+1, i-1)+R(i+1,7)}
where | < i must be a valid running path.

Solving the problem on a circle is not very different. The vertices of P can still be
numbered 1 to n. The primary conceptual difference is that an interval may continue past
n back to 1, giving us a right endpoint that is smaller than the left endpoint. For example,
the interval [n,1] would represent only the two vertices n and 1, while the interval [1, n]
would represent the entire circle. With that in mind, the only change that needs to be
made to the recursion is that the interval I < i < r should be every vertex from [to r going
clockwise. After this change, the answer is computed as the subproblem R(1, n). O

This particular circular interval DP is among the simpler in that it's unusually easy to
reduce to the line case. Sometimes that’s harder, but the idea of thinking in intervals [/, r]
going clockwise from [to r is typically the right way.

Problem 11.10.
Arranging Hat arranginghat

Subset DP
Earlier in the chapter, we mentioned the longest path problem in general graphs. It was
clear that we couldn’t write a dynamic programming solution to it using only the location
of the last vertex added to a path like we could for DAGs. The naive backtracking solution
would take something like ®(n!) time. There would be n choices for where to start, n — 1
neighbors for each of them to visit, then # — 2 choices for the third vertex, etc.

DP can't help us to do better than exponentially, but it can drastically reduce the time
compared to that backtracking using the subset DP technique. It refers to doing dynamic
programming where one of the parameters is a subset of some largest set.

185

https://heap.link/problem/runningroutes
https://heap.link/problem/arranginghat

® N 22w &

CHAPTER 11. DYNAMIC PROGRAMMING

Subset DP has two main use cases. For backtracking over permutations constructed
one element at a time, we may be able to modify the recursion into only caring about which
elements have been added to the permutation so far, rather than in what order. The result
would be a reduction of the number of recursive calls from #! to 2". That’s what happens in
the next problem, where we solve a variant of the NP-complete traveling salesman problem,
a close cousin to the longest path problem, after which we examine the second use case.

Amusement Park - tivoli
By Arash Rouhani. Swedish Olympiad in Informatics 2012, Online Qualifiers.
Lisa has just arrived at an amusement park, and wants to visit each of the N < 15 attractions exactly
once. For each attraction, there are two identical facilities at different locations in the park. Given
the coordinates in the XY-plane of all the facilities, determine which facility Lisa should choose for
each attraction to minimize the total distance she must walk. Lisa starts at the entrance at (0,0)
and must return there after visiting every attraction.

Solution. Consider a partial walk constructed by naive backtracking, where we have
visited attractions s, . . ., sy and currently stand at the i’th facility of type jat (x, y). When
deciding where to go next, it’s completely irrelevant in what order the s; were visited.
We only care about what the set S = {sj,...,s¢} is, since we do not need to visit any
of the attractions in S again. A good DP state thus seems to be (S, i, j). Note that i, j
only have at most 30 possibilities — two for each attraction. We also need to add an extra
possible for the starting position. Since we have at most 15 kinds of attractions, the set S of
visited attractions has 2'° possibilities. This gives us 31 2! ~ 10° states. Each state can be
computed in ®(N) time, by looping over what attraction to visit next. All in all, we get a
complexity of @(N?2V).

: procedure AMUSEMENTPARK(}, j, S)

if S contains every attraction then

return dist((xi,j, ¥i,;), (0,0)) D> tour is done — go back to the entrance
answer « oo
for every attraction s not yet in S do

answer < AmusementPark(s, 0, S U {s}) + dist((xi,j, ¥i,j)> (%505 ¥.0))

answer < AmusementPark(s, 1, S U {s}) + dist((xi,j, yi.;)> (Xs,1, ¥s.1))

return answer

To code DP over subsets we generally use bitsets to represent the subset, since these
map very cleanly to integers (and therefore indices into a memoization array). Revisit
Section 6.5 if you don’t remember how this works.. O

Subsets also appear naturally as a parameter in the backtracking recursion we base the
DP on.

186

https://heap.link/problem/tivoli

11.3. STANDARD TECHNIQUES

MeTube - dutub
By Arash Rouhani. Swedish Olympiad in Informatics 2018, School Qualifiers.

You should really be asleep by now, but you've kept watching one more video on MeTube all night...
There are C < 10 different video categories (such as algorithm tutorials, funny cat videos and
dishwasher repairs) that you are interested in. Each of the N < 30 videos on MeTube can belong to
one or more categories (like a cat repairing a dishwasher as an example of a brute force algorithm).
Before going to bed, you want to watch have watched videos in each category.

Given the videos, their categories and the lengths of each video, compute the minimum time
you need to watch at least one video from each category.

Solution. Like in most cases where solution candidates are subsets of something, we apply
a recursive solution where each video in turn either is included or excluded from the
solution. After making this choice for the first k videos, the only state we need to keep
track of is what categories the videos picked so far belonged to. This is a subset of size 2,
which together with k gives N2 states, each of which takes constant time to process. [

Problem 11.11.

Programming Team Selection programmingteamselection
Paths paths (all subtasks)
Digit DP

Digit DP is a class of problems where we count the number with some certain properties, up
to some given limit. These properties are characterized by having the classical properties of
DP problems, i.e. being easily computable if we would construct the numbers digit-by-digit
by remembering very little information about what those numbers actually were.

Palindrome-Free Numbers - palindromefree
By Antti Laaksonen. Baltic Olympiad in Informatics 2013
A string is a palindrome if it remains the same when it is read backwards. A number is palindrome-
free if it does not contain a palindrome with a length greater than 1 as a substring. For example,
16276 is palindrome-free whereas 17276 contains the palindrome 727. The number 10102 is not valid
either, since it has 010 as a substring (even though 010 is not a number itself).
Calculate the number of palindrome-free numbers between two given integers 0 < a < b < 10™%.

Solution. A common simplification when solving counting problems on an interval [a, b]
is to solve the problem for [0, a — 1] and [0, b] instead. The answer is then difference
between the answer for the second interval minus the answer for the first one. These
problems are much easier when counting the numbers in an interval starting at 0 instead.

Now comes an essential observation to turn the problem into a standard application
of digit DP. Palindromes as general objects are very unwieldy in our situation. An iterative
construction of numbers has to check digits far back in the number since any of them
could be the edge of a palindrome. Fortunately, it turns out that any palindrome must

187

https://heap.link/problem/dutub
https://heap.link/problem/programmingteamselection
https://heap.link/problem/paths
https://heap.link/problem/palindromefree

1
2
3
4
5
6
7
8
9

CHAPTER 11. DYNAMIC PROGRAMMING

contain a rather short palindromic subsequence, namely one of length 2 (for even-length
palindromes), or length 3 (for odd-length palindromes). Consequently, we only need to
care about the last two digits when constructing the answer recursively. When adding a
digit to a partially constructed number, it may not be equal to either of the last two digits.

Before arriving at the general solution, we solve the problem when the upper limit is
999...999 - exactly n digits of 9. Counting how many numbers we can construct of this
type is then a straightforward recursion, where we construct the number one digit at a
time (starting with the largest one), keeping track of the last two digits. We show C++
code for this since problem the implementation can be a bit tricky.

Snippet 11.1: Palindrome-free numbers, only 9's

long long palFree(int at, int len, int b1, int b2) {

// We are done constructing the number

if (at == len)
return 1;

long long answer = 0;

for (int digit = o; digit < 10; digit++) {
// This digit would create a palindrome, so skip it
if (d == b2 || d == b1)

continue;

// If the number has a leading zero and we add a new leading
// zero, we make sure that the new "previous digit" is a
// leading zero instead to avoid the palindrome check.

if (b2 == -1 8§58 d == 0) {
answer += sol(at + 1, len, -1, -1);
} else {

answer += sol(at + 1, len, b2, d);
}
}
return answer;

}

// We start the construction with an empty number with leading zeroes.
palindromeFree(o, N, -1, -1);

We fix the length of all numbers to have length n, by giving shorter numbers leading
zeroes. Since leading zeroes in a number are not subject to the palindrome restriction, they
must be treated differently. We represent them by the special digit —1 instead, resulting in
11 possible “digits”. Once this function is memoized, it will have 7 - 2 - 11 - 11 different states.
Each state takes constant time to compute, so time-wise this is not an issue at all since # is
bounded by 19 in the problem.

Once a solution has been formulated for this simple upper limit, extending it to a
general upper limit is much easier. We first save the upper limit as a sequence of digits L.
Then we need to differentiate between two cases in our recursive function. Either the at
digits we have added so far are equal to the at first digits of the upper limit or they already
form a smaller prefix than the upper limit. In the first case, we can't add a digit larger than

188

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32

11.3. STANDARD TECHNIQUES

the next digit of the upper limit, or we the number would exceed the upper limit. In the
other case the number we are making is lower than that of the upper limit no matter what

digits we add.
These changes result in our final solution. Pay careful attention to it. While slightly

tricky to get right the first time, most digit DP solutions follow this template.

Snippet 1

1.2: Palindrome-free numbers, general

vector<i

long long palFree(int at, int len, bool equalTolimit, int b1, int b2) {

nt> L;

// We are done constructing the number

if (
long
int
if (
}

for

}

retu

}

// We start the construction with an empty number with leading zeroes.

palindro

at == len)

return 1;

long answer = 0;
maxDigit = 10;
equalTolLimit) {
maxDigit = L[at];

(int digit = o; digit < equalToLimit; digit++) {
// This digit would create a palindrome, so skip it
if (d == b2 || d == b1)

continue;

bool newEqualTolLimit = equalToLimit && digit == L[at];

// If the number has a leading zero and we add a new leading
// zero, we make sure that the new "previous digit" is a
// leading zero instead to avoid the palindrome check.
if (b2 == -1 85 d == 0) {
answer += sol(at + 1, len, equalToLimit, -1, -1);
} else {
answer += sol(at + 1, len, equalTolLimit, b2, d);

}

rn answer;

meFree(o, N, true, -1, -1);

Problem 11.12.

\% v

Hill Numbers hillnumbers
Digit Sum digitsum
Tree DP

Moving on to the last DP technique in this chapter, solutions become more abstract. When
doing tree DP — dynamic programming on trees — subproblems and their parameters start

189

https://heap.link/problem/v
https://heap.link/problem/hillnumbers
https://heap.link/problem/digitsum

CHAPTER 11. DYNAMIC PROGRAMMING

to lose their status as “just an optimized backtracking algorithm”. This is in part because
it’s harder to visualize backtracking algorithms on tree problems as compared to problems
on sequences, so the solutions seem less natural.

To do DP on trees, we start by rooting it arbitrarily and then solve subproblems for each
subtree instead. The hope is that it’s easy to compute the answer for the subtree of a vertex
using the answers of it’s children’s’ subtrees. That’s often where the DP ends, memoizing a
recursion performed on subtrees. Sometimes, we also use a second DP solution in order
to combine the subtree answers if the problem is complicated enough. Just as for digit DP,
most tree DP problems are very similar and tend to follow the structure, so make sure to
internalize the following solution!

Fire Exits - fireexits
A museum has N < 2000 rooms connected by N — 1 corridors such that one can get from any room
to every other room. The museum has no fire exits, but local regulations require that exits should be
placed in a subset of rooms such that it’s possible to get to an exit passing through no more than D
corridors. Building exits in different rooms have different costs. Given those costs, compute the
minimum cost to construct the required exits.

Solution. The rooms and corridors of the museum form a tree, which we start by arbitrarily
rooting. As always in DP problems, we try to find choices to recurse on. Here, we have
two choices for the root r of the tree — we either build or don’t build a fire exit at it. In the
first case we get a subproblem for each child v;: computing the minimum building cost
for that subtree if we already have a fire exit at distance 1 from v; somewhere above v; in
the tree. For the purposes of the DP, we generalize the subproblem to letting the fire exit
be at some arbitrary distance d from v; instead. It will become clear why later on.

The other case is the tricky aspects of tree DP. Without an exit in r, an exit built
somewhere in the subtree of e.g. v; could be the closest exit to vertices in the subtree v, in
an optimal solution. Only two things matter for this spillover between subtrees though;
what subtree has the fire exit closest to r, and the exit’s distance to . This yields a second
subproblem for each v;: computing the minimum building cost for a subtree if we promise
to build an exit in the subtree not more than some known distance d away from v;.

The answer to the full problem can be expressed as a subproblem of either type. For
the first type, having an imaginary fire exit at distance D + 1 from the root for the first
kind, and for the second promising to build a fire exit at most distance D from the root
for the second kind. We also only have O(N?) states (d is always capped by D which is
capped by N), so if we can solve the subproblems in constant time we're fine. However,
we must first check that, for a given v and d, the subproblems can be solved recursively
using only the answers to both questions for each child of v. Note that the two recursions
are allowed to call each other! This multi-DP trick is a neat one that seldom is strictly
necessary but can help to simplify some DP solutions.

We start with a slower solution that we then optimize. Call the first subproblem

190

https://heap.link/problem/fireexits

11.3. STANDARD TECHNIQUES

HasUp(v,d) and the second one NeedUp(v,d). Let’s compute HasUp(v,d) first, i.e.
there is already a fire exit d steps away from a vertex v further up in the tree. If we build a
exit at v for cost c,, we compute the total cost of the subtree as

¢y + . HasUp(u,1)
child u
since each child u now has a fire exit at distance 1. The hard case is if v doesn’t get an
exit, and the exits may spill over between the child subtrees. There are two subcases here,
depending on if the closest exit to v is the one d steps upwards in the tree, or in a subtree.
In the first case, if d < D, v needs no new exit and the closest exit to the children from
further up is at distance d + 1, i.e. the cost is 3" 14 , HasUp(u, d +1).
In the second case, loop over the smallest distance d’ < D from one of the children to
an exit, as well as what child ¢ has the exit in its subtree. That exit has distance d” + 2 to all
the other children, so the total cost can be computed as

NeedUp(c,d’)+), HasUp(c',d'+2).
child ¢’+c¢
The recursion for NeedUp(v, d) is similar. We either build an exit at v for the same
cost as in the HasUp case, or one of the children must have built a exit that is at most
distance d — 1 away from v. This last case can be computed in the same way too: loop over
what the actual minimum distance d’ < d of one of the children is, and compute the cost
using the same formula as in the first case.

1: procedure HasUpr(v, d)

2: answer < ¢y + Y. cpua » HasUp(u,1)
3: if d < D then
4 answer < min(answer, Y 4 » HasUp(u, d +1))
5: for0<d < Ddo
6: for child ¢ do
7: answer < min(answer, NeedUp(c,d') + ¥ ..., HasUp(c', d" +2))
8: return answer
9: procedure NEepUP(v, d)
10: answer < ¢y + ¥ qpia » HasUp(u, 1)
1n: for0<d' <ddo
12: for child ¢ do
13: answer < min(answer, NeedUp(c,d') + ¥ ..., HasUp(c', d" +2))
14: return answer

These functions have three nested loops: one for d’, one for ¢, and then there’s a sum
over all children to v. In the worst case, that could be O(N?) time. With N? subproblems
wed be looking at an upper bound of O(N>) time, way too much for N = 2000. We'll now
start our journey to O(1) per state!

191

[

AN A T

CHAPTER 11. DYNAMIC PROGRAMMING

The first factor N we win for free. When looping over all children in tree problems,
remember that on average a vertex only has O(1) children (there are N vertices and N — 1
children in total).

In HasUp we win a second linear factor since the expression computed by the nested
loop is actually independent of d. Thus we can compute it only once for each v, amortizing
it out to O(N) per state.

The same thing does not work as-is in NeedUp, since the nested loop actually depends
on d. We throw in yet another useful DP trick. The only difference between NeedUp(v, d -
1) and NeedUp(v,d) is that the loop in the latter case includes NeedUp(c,d — 1) +
> ez HasUp(c’, d + 1), so the function can be simplified to

: procedure NEepUP(v, d)

answer < ¢y + Y. cuua » HasUp(u,1)
answer < min(answer, NeedUp(v,d —1))
for child ¢ do
answer < min(answer, NeedUp(c,d —1) + 3./, HasUp(c',d +1))

return answer

Now, only a single factor N remains, which is the one hidden in the linear-time
computation of the expression

NeedUp(c,d —1) + > HasUp(c',d +2)).
c'#c

We need one final trick which might be the most common one when working on this
sort of thee problems. When the loop changes from a child ¢, to a child ¢;, the sum
only changes with two terms: HasUp(c,,d + 1) — HasUp(cp, d +1). The sum can thus be
updated in constant time for each loop iteration.

After these optimizations, only computations that take linear time in the amount
of children remain, which as stated is amortized O(1) over all the vertices, so the total
complexity is ®(N?). O

Exercise 11.13. In HasUp we have no explicit base cases. Is this a problem?

Exercise 11.14. In HasUp it may be the case that the function is invoked with d = D + 1
in the recursive calls on lines 4 and 7. What does this subproblem represent? Can the
function be called with even higher d?

Problem 11.15.
Chicken Joggers joggers

This solution was pretty hard and introduced a lot of tricks. In fact, that was most of
our tree DP toolbox. Read it through a few times until you feel that you fully understand
each step, and you will see that most tree DP problems become easy. The highlights were:
amortized time complexity over all children, winning linear factors by updating sums

192

https://heap.link/problem/joggers

1:
2:

3:

11.4. STANDARD PROBLEMS

within loops that change with O(1) factors, and noticing large amounts of overlap between
subproblems (that NeedUp(v, d) and NeedUp(v, d —1) computed almost the same thing)
in order to avoid loops in the recursion. These techniques are general to all tree problems
of this nature, not only the ones where we need DP.

11.4 Standard Problems

In your DP toolbox, you also need to master the following standard problems. The border
between standard problems and techniques is blurry. The first problem, Knapsack, has
so many common ubiquitous variations that it might be viewed as a technique instead.
Similarly, traveling salesman — considered here as just an application of the bitset DP —
could be considered a standard problem. The practical difference in the book is we look at
the “normal” formulation of the standard problems rather than applied examples.

Knapsack

We start with the “traditional” knapsack problem and then briefly mention a few variations.

Knapsack — knapsack
You have a knapsack with an integer capacity C, and » different objects, the i’th with an integer
weight w; and value v;. Select a subset of the items with maximal value, such that the sum of their
weights does not exceed the capacity of the knapsack.

Solution. The common DP solution to this is ®(nC), but depending on the constraints
other solutions are also possible'. For very large C you can do a 2" brute-force search,
trying all subsets of the items, or with a little more effort do meet in the middle to reduce
it to 23.

Our approach is the normal one for DP on choosing subsets: we view the subset as a
sequence of choices, where we either include an item or not. In this particular problem,
the resulting DP state becomes very small. After including a few items, we are left only
with the remaining items and a smaller knapsack to solve the problem for.

Letting K(c, i) be the maximum value using at most weight ¢ and the i first items, we
get the recursion

K(c,i-1)

K(c-w;,i-1)+v; ifw;<c.

K(c, i) = max{

Translating this recursion into a bottom-up solution gives a compact algorithm:

procedure KNapsack(C, n, V, W)
best < new (n +1) x (C +1) array filled with —oco
best[0][0] =0

In fact, O(C max w;) can be done, but that’s complex.

193

https://heap.link/problem/knapsack

® N 2wk

10:

11:

12:

CHAPTER 11. DYNAMIC PROGRAMMING

for i from1to n —1do
best[i] < best[i —1]
for j from 0 to C do
if W[i—1] < jthen
best[i][j] < max(best[i][j], best[i —-1][j— W[i-1]] + V[i-1])

return best

Exercise 11.16. How can you do the above DP in only O(C) memory?

This computes the maximum values, but doesn’t explicitly construct the subset. The
reconstruction is very similar to the longest path in a DAG reconstruction but now has
two parameters, which makes it look more complicated.

procedure KnapsackConsTrUCT(C, n, V, W)
best < Knapsack(C,n, V, W)
bestCap < C
for i from C to 0 do
if best[n][i] > best[n][bestCap] then
bestCap « i
for i from n to 1 do
if W[i —1] < bestCap then
newVal < best[i — 1][bestCap — W[i—1]] + V[i - 1]
if newVal = best[i][bestCap] then
add item i to the answer
bestCap « bestCap — W[i —1] |

Problem 11.17.
Exact Change exactchange2
Canonical Coin Systems canonical

The most common variation is when we are allowed to use each item an unlimited
number of times. We formulate our DP solution in a similar way. The subproblem is the
same, i.e. the maximum value obtainable by filling a knapsack of weight ¢ using items
i,i—1,...,0. Insuch a situation, we have two choices. We can either use i, leaving us with
the same set of items but using at most ¢ — w;, or decide that we have finished using item i
and look at the set of items i — 1, ..., 0. The recursion is only changed by two characters:

K(c,i)=K(c,i-1)+ K(c—wj, i).

In Section 9.4 we briefly looked at a meet in the middle solution to the subset sum
problem. This can also be viewed as a knapsack variant, where we ignore all the values
and instead only focus on whether we can fill the knapsack with a certain weight or not.
The knapsack DP can be adapted for subset sum with only minor changes, and conversely,
the subset sum MITM can easily solve knapsack.

194

https://heap.link/problem/exactchange2
https://heap.link/problem/canonical

11.4. STANDARD PROBLEMS

Problem 11.18.

Walrus Weights walrusweights
Restaurant Orders orders
Muzicari muzicari

Longest Common Subsequences and Substrings
Another well-known class of DP problems is finding longest common subsequences and
substrings of two sequences (see page 401 for a reminder of the terms).

Longest Common Subsequence
Given two sequences A = (di, a, ..., a») and B = (b1, ba, ..., b), find a longest sequence cy, ..., ¢k
that is a subsequence of both A and B.

Solution. When dealing with DP problems on pairs of sequences, a natural subproblem is
prefixes of A and B. Here, some case analysis on the last letters of the strings A and B is
enough for a solution. If the last letter of A is not part of a longest common subsequence,
we can simply ignore it, and solve the resulting subproblem where the last letter of A is
removed. The same applies to B. The remaining case is that both the last letter of A and the
last letter of B are part of a longest common subsequence. In this case they can correspond
to the same letter in a common subsequence, so that the remainder of the subsequence is
the longest one we get after removing these two from the end of A and B. This yields a
recursive formulation, which takes © (| A||B|) to evaluate since each state needs ©(1) time:

0 ifn=00rm=0

les(n—1,m) ifn>0
les(n, m) = max

les(n,m—1) ifm>0

les(n—-1,m-1)+1 ifa, =b,

O
Problem 11.19.
Prince and Princess princeandprincess
Knight Search knightsearch

Finding the longest common substring is not very different. The subproblem is instead
finding the longest common substring that ends exactly at positions n and m in the strings,
rather than the longest common substring of the prefixes. Then the answer for the cases
where the last letters doesn’t match is 0, so the recursion becomes

les(n-1,m-1)+1 ifa, =b,
les(n, m) =

otherwise

and we find the answer by taking the max of all lcs(#n, m) results.

195

https://heap.link/problem/walrusweights
https://heap.link/problem/orders
https://heap.link/problem/muzicari
https://heap.link/problem/princeandprincess
https://heap.link/problem/knightsearch

CHAPTER 11. DYNAMIC PROGRAMMING

Longest Increasing Subsequence

Finding the longest increasing subsequence (LIS) is just as easy as finding a longest common

subsequence. The LIS of a sequence A is actually the longest common sequence of A and

A but sorted. This reduction gives you a simple way to compute the LIS in quadratic time.
Fortunately? the LIS can be found even faster than ®(N?) that the common subse-

quence reduction results in.

Longest Increasing Subsequence - longincsubseq
Given a sequence of integers s1, . . . , su, find a longest increasing subsequence ai, . . . , ax, i.e. where
ai < dij+1.

Proof. The correct subproblem is finding the LIS of some prefix [0, i] that ends with the
element i. Let’s denote the length of it LIS(i). A recursion that takes linear time per i to
evaluate is simple. Among the smaller elements to the left we find the one with the longest
increasing subsequence and extend it:

LIS(i) =1+ max LIS(j).

0<j<i and s;>s;
To speed it up we do something very clever. We compute the values of LIS(7) in the order
i=0,1,.... At the same time, we keep an array where B[x] contains the smallest value s;
of the sequence such that LIS(i) = x, so far. With this array, we can rewrite the recursion
in the following way:

LIS(i) =1+ max x.
si>B[x]

Keeping the array updated is easy, after computing LIS(i) we set B[LIS(i)] = s;. This
approach is still quadratic in the worst case.

To proceed, we must realize that B is a sorted array. If there is a LIS of length # that ends
with an element x, we can just throw away the last element to get a LIS of length # — 1 that
ends with an element strictly smaller than x. This gives us the inequality B[n — 1] < B[#n],
so B is indeed sorted. Evaluating max;,. g[] X is now a matter of finding the greatest x
in B such that B[x] < s; in a sorted array B. This is easily done with lower_bound in C++
which you might remember from page 46. This function takes only logarithmic time, so
that the full solution is (N log N) .

To reconstruct the sequence, we need some extra bookkeeping. That code is very subtle,
so we include it in C++. The implementation is slightly different from the description.
Instead of LIS(i) = 1+ max,,,p[,] X the equivalent computation LIS(i) = min,, cp[,] X
(where this is taken to be | B| if there is no such B) is used. Since B is sorted and contains
no duplicates, these expressions are equivalent, but the latter is easier to compute with

lower_bound.

>Or unfortunately, since this means more for you to remember!

196

https://heap.link/problem/longincsubseq

11.4. STANDARD PROBLEMS

Snippet 11.3: Longest increasing subsequence with reconstruction

vector<int> lis(const vector<int>§ S) {
if (S.empty()) return vector<int>();
vi prev(S.size());
vector<pair<int, int>> B;
for (int i = o; i < (int)S.size(); i++) {
// The smallest x where B[x] >= S[i]
int x = lower_bound(B.begin(), B.end(), make_pair(S[i], ©)) - B.begin();
if (x == B.size()) {
B.emplace_back();

}
B[x] = {s[il, i};
prev[i] = x == 0 ? @ : B[x - 1].second;

}
int len = B.size();
int at = B.back().second;
vi ans(len);
while (len--) {
ans[len] = at;
at = prev[at];
}

return ans;

The meaning of prev[i] is to store the index of the element that precedes s; in the LIS that
ends at s;, which is what enables the backtracking. To find it, we store not only sequence
values in B, but also the index of the value as a pair. O

Exercise 11.20. How would you modify the solution to find the longest non-decreasing
subsequence (meaning that it’s enough that a; < a;41)?

Problem 11.21.

Alphabet alphabet

Panda Chess pandachess

Train Sorting trainsorting
Manhattan Mornings manhattanmornings
Set Cover

We end the chapter with an application of subset DP on another classical NP-complete
problem.

Set Cover
You are given a collection of subsets Si, Sz, ..., Sk of some larger set S of size n. Find a minimum
number of subsets S, Sa,, ..., Sq; such that

1
USa =S
i=1

197

https://heap.link/problem/alphabet
https://heap.link/problem/pandachess
https://heap.link/problem/trainsorting
https://heap.link/problem/manhattanmornings

CHAPTER 11. DYNAMIC PROGRAMMING

i.e., cover the set S by taking the union of as few of the subsets S; as possible.

Solution. For small k and large 1, we can solve the problem in ®(n2%) by testing each
of the 2¥ covers. In the case where we have a small # but k can be large, this becomes
intractable. Let us instead apply the principle of dynamic programming. In a brute force
approach, we would perform k choices. For each subset, we would try including it or
excluding it. After deciding which of the first m subsets to include, what information is
relevant? If we consider what the goal of the problem is - covering S - it would make
sense to record what elements have been included so far. This little trick leaves us with a
DP of ®(k2") states, one for each subset of S we might have reached, plus counting how
many of the subsets we have tried to use so far. Computing a state takes @(n) time, by
constructing the union of the current cover and the set we might potentially add. The
recursion thus looks like:

0 ifC=S§
cover(C, k) =
min(cover(C, k +1),cover(CuU S,k +1)) else

This is a fairly standard DP solution. The interesting case occurs when 7 is small, but
k is really large, say, k = ®(2"). In this case, our previous complexity @ (nk2") turns into
©@(n4™). That’s too slow for anything but very small n. To avoid this, we must rethink our
DP a bit.

The second term of the recursive case of cover(C, k), i.e. cover(C U Sy, k +1), actually
degenerates to cover(C, k + 1) if S € C. When k is large, this means many states are
essentially useless. In fact, at most #n of our k choices will actually result in us adding
something, since we can only add a new element at most » times.

We have been in a similar situation before when solving the backtracking problem
Basin City Surveillance in Section 9.2. We were plagued with having many choices at each
state, where a large number of them would fail. Our solution was to limit our choices to a
set where we knew an optimal solution would be found.

Applying the same change to our set cover solution, we should instead do DP over our
current cover, and only try including sets which are not subsets of the current cover. So,
does this help? How many subsets are there, for a given cover C, which are not its subsets?
If the size of C is m, there are 2™ subsets of C, meaning 2" — 2™ subsets can add a new
element to our cover.

To find out how much time this needs, we use two facts. First of all, there are (:1)
subsets of size m of a size n set. Secondly, the sum Y ;,_, (:1)2'“ = 3™, If you are not
familiar with this notation or this fact, you probably want to take a look at Section 18.3.1
on binomial coefficients.

So, summing over all possible extending subsets for each possible partial C, we get:

" (n
Z()(Zn_zm)zzn_zn_3n:4n_3n
m=0 \1"

198

11.4. STANDARD PROBLEMS

Closer, but no cigar. Intuitively, we still have a large number of redundant choices. If our
cover contains, say, n — 1 elements, there are 2"~! sets which can extend it, but they all
extend it in the same way - adding the last element. This sounds wasteful, and avoiding it
probably the key to getting an asymptotic speedup.

It seems that we are missing some key function which, given a set A, can answer the
question: “is there a subset S;, that could extend our cover with some subset A € S?”. If we
had such a function, computing all possible extensions of a cover of size m would instead
take time 2"~ - the number of possible extensions to the cover. Last time we managed to
extend a cover in time 2" — 2™, but this is exponentially better!

The sum results in something different this time:

mznjo (:1)2”_'") mznjo (” ilm)Z"_m
=)

3ﬂ

It turns out our exponential speedup in extending a cover translated into an exponential
speedup of the entire DP.

We are not done yet - this entire algorithm depended on the existence of the magical
“can we extend a cover with a subset A?” function. Sometimes, this function may be fast
to compute. For example, if S = {1,2, ..., n} and the family S; consists of all sets whose
sum is less than n, an extension is possible if and only if its sum is also less than 7. In the
general case, our S; are not this nice. Naively, one might think that in the general case, an
answer to this query would take ®(nk) time to compute, by checking if A is a subset of
each of our k sets. Yet again, the same clever trick comes to the rescue.

If we have a set S; of size m available for use in our cover. just how many possible ex-
tensions could this subset provide? Well, S; itself only have 2™ subsets. Thus, if we for each
S; mark for each of its subsets that this is a possible extension to a cover, precomputation
only takes 3" time (by the same sum as above).

Since both steps are O(3"), this is also our final complexity. O

Exercise 11.22. This last step can be done in time ®(k + n2"). How?
Problem 11.23.

Square Fields (Hard) squarefieldshard

Map Colouring mapcolouring

ADDITIONAL EXERCISES

Problem 11.24.

Selling Spatulas sellingspatulas

199

https://heap.link/problem/squarefieldshard
https://heap.link/problem/mapcolouring
https://heap.link/problem/sellingspatulas

CHAPTER 11. DYNAMIC PROGRAMMING

Spiderman’s Workout spiderman

Narrow Art Gallery narrowartgallery

Cheating a Boolean Tree cheatingbooleantree
Welcome to Code Jam welcomehard

Bus Planning busplanning

Maximizing Winnings maximizingwinnings

Nine Packs ninepacks

Hiding Chickens hidingchickens

The Uxuhul Voting System uxuhulvoting

Nested Dolls nesteddolls

Aspen Avenue aspenavenue

Presidential Elections presidentialelections
Constrained Freedom of Choice constrainedfreedomofchoice
Tight words tight

Springoalla springoalla (all subtasks)
Balanced Diet balanceddiet

NoOTES

Dynamic programming is one of the most useful algorithmic techniques to know. It
appears in almost every contest at least once in, as you noticed, a large number of shapes
and forms. There are many more DP techniques which we did not go through here, mostly
related to different ways that a DP solution can be optimized.

The term itself is often attributed to Richard Bellman, one of the authors who the
Bellman-Ford algorithm for shortest paths in weighted graphs is named after, which is
very much a dynamic programming algorithm.

While many NP-complete problems such as TSP, knapsack, subset sum, set cover and
so on have simple DP solutions that are fast enough for contest problems, they are seldom
the ones of best proven time complexity or fastest in practice (which are two very different
things).

200

https://heap.link/problem/spiderman
https://heap.link/problem/narrowartgallery
https://heap.link/problem/cheatingbooleantree
https://heap.link/problem/welcomehard
https://heap.link/problem/busplanning
https://heap.link/problem/maximizingwinnings
https://heap.link/problem/ninepacks
https://heap.link/problem/hidingchickens
https://heap.link/problem/uxuhulvoting
https://heap.link/problem/nesteddolls
https://heap.link/problem/aspenavenue
https://heap.link/problem/presidentialelections
https://heap.link/problem/constrainedfreedomofchoice
https://heap.link/problem/tight
https://heap.link/problem/springoalla
https://heap.link/problem/balanceddiet

CHAPTER 12

Divide and Conquer

A recursive algorithm solves a problem by reducing it to smaller instances of the same
problem, hoping that their solutions can be used to solve the original instance. Most
earlier examples shaved off a small bit of the instance before recursing on it. For example,
a problem might have asked us to make # choices in the optimal way, and we reduced the
problem to making n — 1 optimal choices instead. Furthermore, in dynamic programming
the subproblems overlapped - solving two different subproblems required solving several
common subproblems.

In this chapter, the recursive solutions take another approach. Instances are split into
subproblems with a lot less (or no) overlap, dividing the problem. Predominantly, the
solutions to these different parts are then combined to a solution to the original instance,
conquering it.

12.1 Recursive Constructions

Recursive constructions constitute a large class of divide and conquer problems. The goal
is to construct something, such as a tiling of a grid, cycles in a graph and so on. Divide and
conquer algorithms reduce the construction of the whole object to constructing smaller
disjoint parts that can be combined into the final construction. Such constructions are
often by-products of mathematical induction proofs for the construction’s existence. In
the following problems, it’s not initially clear whether the objects we are asked to construct
even exist.

Grid Tiling - gridtiling
In a square grid of side length 2" (n < 8), one unit square is blocked. Your task is to cover the
remaining 4" — 1 squares with triominos, L-shaped tiles consisting of three connected squares. The
triominos can be rotated by any multiple of 90° (Figure 12.1).

A LS

Figure 12.1: The four rotations of a triomino.

The triominos may not overlap each other, nor cover anything outside the grid.

201

https://heap.link/problem/gridtiling

CHAPTER 12. DIvIDE AND CONQUER

Figure 12.2: A possible tiling for n = 2.

Solution. Grid constructions are a good target for divide and conquer algorithms. The
first step is to find out what smaller instances should be solved recursively. For this case,
the side length 2" hints at what those are. Aside from the property that 2" - 2" —1is
evenly divisible by 3 (a necessary condition for a tiling to be possible), the fact that 2” can
repeatedly be split in half makes it natural to divide the grid into its 4 quadrants, as in
Figure 12.3.

Exercise 12.1. Prove that 4" — 1 is divisible by 3.

H

Figure 12.3: Splitting the n = 3 case into its four quadrants.

Each quadrant of a 2" x 2" grid has the size 2"~ x 2”71, the grid size for the case n — 1.
We cannot recursively tile these four smaller grids immediately though. The crux lies in
that the new grids lack the single black square that the original problem has. Indeed, a
grid without a black square can not be tiled using triominos since 4” is not divisible by 3.

m|

Figure 12.4: A solution to the n =1 case.

The solution lies in the trivial tiling of the n = 1 case, which actually reduces the
problem to four instances of the n = 0 case (see Figure 12.4) — a 1 x 1 grid each containing
only a single black square. In the solution, a black square was introduced in each of the
three other quadrants by a triomino in the center, the only place where a triomino even
can cover three quadrants at once. The same construction works on a grid of any size
(Figure 12.5). After this modification, we can apply the the divide and conquer principle.

202

12.1. RECURSIVE CONSTRUCTIONS

Figure 12.5: Placing a triomino in the corners of the quadrants without a black square.

Split the grid into its four quadrants, each of which now contains one black square. The
quadrants can now be solved using the same procedure recursively. At some point, the
recursion bottoms out at a 1 x 1 case, which needs no triomino to be tiled.
A recursive algorithm performing this tiling does only constant-time work, except for
four recursive calls to itself. Each recursive call places exactly one triomino on the grid
4"-1

(except for base case N = 0). There are =~ tiles to be placed, so the time complexity is

©(4"). This is asymptotically optimal, since this is also the size of the output. O

Problem 12.2. Color Tiling colortiling

We saw two key ideas here: looking at small cases to seek out a conquer strategy, and
finding natural ways of dividing the structure were constructing. Keep these ideas in
mind, since they are often the right path to a solution.

While most divide and conquer problems are about constructing very tangible objects
that you can draw on a piece of paper (like paths on a grid, tilings or colorings), the
technique pops up in more abstract contexts too, as the next problem demonstrates.

Divisible Subset - divisiblesubset
Let n = 2%, where 0 < k < 15. Given 21 — 1 integers, find a subset of size exactly n with a sum that’s
divisible by #.

Solution. A lot of progress can be made on problems by solving a few small cases by hand.
This applies especially to construction problems, where the solutions for small inputs
can hint at a generalizable pattern, or give you a clever insight into how to solve larger
instances.

The n =1 case here is uninteresting since it’s trivially true. For n = 2, we get an insight
that might not seem valuable but is key to the problem. The question that’s asked is then,
given 2 -2 — 1 = 3 numbers, are there two numbers whose sum is even? Among any
three numbers, there must be two that are either both even, or both odd. Both of these
cases yield a pair with an even sum. This construction surprisingly generalizes to larger

203

https://heap.link/problem/colortiling
https://heap.link/problem/divisiblesubset

CHAPTER 12. DIvIDE AND CONQUER

instances. A recursion follows after attempting to find a way to combine solutions to the
smaller instance.

We lay some ground work for a reduction of the case 2n to n. First, assume that we
could solve the problem for a given n. The larger instance then contains 2(2n —1) = 4n -1
numbers, of which we seek 2n numbers whose sum is a multiple of 2x. This situation is
essentially the same as for the case n = 2, except everything is scaled up by n. Can we scale
our solution up as well?

The relevant question becomes: if we have three sets of # numbers whose respective
sums are all multiples of 1, can we find two sets of n numbers whose total sum is divisible
by 2n? Yes we can, by the same argument as for # = 2. Given three subsets with sums
an, bn, cn, finding two whose sum is divisible by 2# is the same as finding two numbers
among a, b, c whose sum is even - exactly the case n = 2.

A beautiful generalization indeed, but we still have some remnants of wishful thinking
to take care of. The construction assumes that, given 4n —1 numbers, we can find three sets
of n numbers whose sums are divisible by n. We have now come to the recursive aspect of
the problem. Recursively, we can pick any 2n — 1 of our 4n — 1 numbers to get our first
subset. The subset uses up n of our 4n — 1 numbers, leaving us with only 37 — 1 numbers.
We keep going, and pick any 2n — 1 of these numbers and recursively get a second subset.
After this, 2n — 1 numbers are left, exactly what’s needed to construct our third subset. The
division is thus into four parts; three subsets of n numbers, and one set of # — 1 which we
throw away.

The complexity of the algorithm is more difficult to analyze than usual. The division
and combination steps can be done in linear time, but makes 3 recursive calls with 7. Asa
result, the complexity obeys the recurrence T(n) = 3T(5) + ®(n). To find a closed form
for this, consider the sum of ®(n) at each of the log, # levels T(3;) of the recurrence. At
the first, there’s a single one with cost @ (), then there’s 3 with the cost @(%), then 32
with cost (%) and so on. In total, thats

g, 1 logyn 3
Z =6y)
i=0 i=0

That inner sum equals

(%)logz(n)ﬂ -1

3
2.1

3 3
_ @((E)logzn) _ ®(nlog2 3) — @(HIOgZ 3—1)'

Multiplying this with # gives the final complexity @ (n!°8:3). O

It is typically easier to do the “divide” part of a divide and conquer solution first, but in
this problem we did it the other way around - coming up with the division required us
to solve the combination part first by generalizing the case n = 2. As always, the order in
which you figure things out about a problem always trumps any formualic approaches.

204

12.2. SEQUENCES

Exercise 12.3. Another way to reduce the problem is to construct n — 1 pairs of integers
with an even sum, throw away the last integer and scale the problem down by 2. What is
the complexity then?

Problem 12.4.
Knight Tour knighttour
Hamiltonian Hypercube hypercube

12.2 Sequences

Another object that naturally invites divide and conquer solutions is sequences. The divide
part is typically straightforward - sequences can be very naturally split in half - but the
combination of the two halves can range from trivial to extremely difficult. The main
principle is the same though: the problem we’re solving must make sense to solve on
disjoint parts of the original instance before investigating if divide and conquer is the
correct way forward.

Inversions - inversions
Given an integer sequence ai, . .., d, (n < 200000), we call the pair 1 < i < j < n an inversion if
a; > a;j. Compute the number of inversions in the sequence.

Solution. The problem gives us a clear invitation to try divide and conquer. Splitting the
sequence in half gives us two contiguous subsequences, and the number of inversions
within those sequences is closely related to the final answer. By recursively counting the
number of inversions where both elements a;, a; lie in either half, we only need to add
the number of inversions where a; is in the left half and a; is in the right half.

The last counting step can be done in ®(nlogn) time. First, note that for a fixed g;
in the first half, the elements a; in the second half it makes an inversion with are exactly
those smaller than a;. If the second half is sorted, those elements are a prefix of the half.
Furthermore, if the first half is sorted too, this prefix never decreases if we gradually
increase a;. By iterating through the a; in increasing order, it's thus enough to keep track
of the largest a; smaller than the current a;, and check whether the prefix can be extended
whenever we check a new a;. * The idea is illustrated in Figure 12.6. The counting step
itself only takes linear time, the ®(nlogn) comes from the sorting.

We don'’t yet know of any sorting algorithms faster than @(nlogn), but perhaps we
don’t need one. During the recursion, we're sorting the same contiguous subsequences
several times. For example, were separately sorting both halves of the array and the
array in its entirety. It’s not unreasonable that the first results — the sorted halves of the
arrays — can help sort the entire array. In fact, we can do this in linear time so that the
entire combination step runs in linear time, for a final time complexity recurrence of

T(n) = 2T(%) +©(n).

"This technique is called two pointers. We investigate it further in Chapter 13.

205

https://heap.link/problem/knighttour
https://heap.link/problem/hypercube
https://heap.link/problem/inversions

CHAPTER 12. DIvIDE AND CONQUER

a; @;
HENEEEN ENENENEN
o | s [s s ffofa]s[s]

a; ay

Ll 2] s Joffr[e2]s[o

Lol s s [sffofs]s s

Figure 12.6: The prefix of the right that a; from the left half creates inversions with. In total, 1+1+2+4
inversions are made from these halves.

Exercise 12.5. Devise a linear time algorithm that, given two sorted arrays, combines them
into a single sorted array.

To compute the complexity, we use the approach from Divisible Subset. By expanding
the recurrence, we get that

log, n

T(n)=). 2’0(;) = @(nlogn).

i=0
O

Since we accidentally sort the entire array in the above solution, we also got @ (nlogn)
sorting algorithm. This sorting algorithm is called merge sort.

Problem 12.6. Heavy Subarrays heavysubarrays

An issue with divide and conquer algorithms is that unless we split the sequence
relatively evenly, the recursion can quickly degrade to quadratic time: consider T'(n) =
T(1) + T(n—1) + ®(n) as the worst case for when the left half always has 1 element and
the right n — 1. Sometimes an uneven split can’t be avoided. We must then reduce the
amount of work done in the recursive function.

Non-Boring Sequences — nonboringsequences

By Adam Polak. Central European Regional Contest 2012.
A sequence is called non-boring if every contiguous subsequence contains a unique element, i.e. an
element such that no other element of that subsequence has the same value. Given a sequence of

206

https://heap.link/problem/heavysubarrays
https://heap.link/problem/nonboringsequences

12.2. SEQUENCES

n < 200000 integers, decide whether it is non-boring.

Solution. The problem practically screams divide and conquer. By definition, the full
sequence must contain a unique element a if it's boring. Every contiguous subsequence
that goes through that element (at least) contain the unique element g, so it'’s enough
to verify that all contiguous subsequences strictly to the left or right of a also contain a
unique element. This is equivalent to the contiguous subsequence containing all elements
to the left (or right) of a being non-boring.

This suggests the following recursive algorithm: find a unique element 4, divide the
sequence into two parts around a, and recursively check whether those parts are non-
boring. Naively it takes linear time to find 4, and if we’re unlucky the unique element is
always at one of the ends, so we get the T(n) = T(1) + T(n —1) + ®(n) recurrence and
a quadratic time complexity. In this case it’s hard to avoid an uneven split since we can’t
control where a is. That means we must attack the other part of the recurrence - the ®(n)
complexity.

To find a unique element you must check each element at least once, so it might seem
impossible to improve. The catch is that over all the recursive calls, we don’t look for
a unique element in a new sequence ever time, but rather connected subsequences of
the original sequence. It’s possible that we could pay a bit of precomputation to avoid
a full linear scan to find a unique element. More specifically, assume that we had a way
to tell in constant time whether a given element is unique within an interval. Then wed
only need to scan the sequence until we find a unique element, for the time complexity
T(n) =T(k)+ T(n-k)+©O(k), where k is the first unique element we find.

Exercise 12.7. Devise a way to answer queries of the type “is the k’th element unique within
an interval?” in constant time, given linear time preprocessing.

Sadly, if k = n — 1 (i.e. the unique element is at the end), the complexity recurrence is
the same. We rescue the solution by scanning the sequence from both ends simultaneously,
one element from each end at a time. This way, we only need to check 2k elements if
the unique element is k elements away from an end, for the time complexity T(n) =
T(k)+ T(n—- k) +©(min(k,n - k)). The worst case is when k = n — k = 7 each time,
resulting in T'(n) = ®(nlogn). O

A similar trick is when the partition of the array is done at a random point. Intuitively,
a random point is on average close to the middle, so the split should be relatively even. It
can be proven that the expected time complexity in this case is also ®@(nlogn).

Problem 12.8. Bottle Caps bottlecaps

207

https://heap.link/problem/bottlecaps

CHAPTER 12. DIvIDE AND CONQUER

12.3 Binary Search

The binary search is the most ubiquitous application of the divide and conquer technique.
We've already used it once when solving Exercise 1.6, early on in the book. To illustrate
the technique, we solve a simple problem: given a real number L and a non-decreasing
function f : R — R, find the greatest x such that f(x) < L. We must also know some reals
lo and hi, such that f(lo) < L < f(hi).

The trick is as simple as it is powerful. Consider the number mid = % If f(mid) < L,
then we know that the answer must lie somewhere in the interval [mid, hi). The case
L < f(mid) instead gives us a better upper bound on the answer: it must be in [lo, mid).

= lo 3 hi = lo B hi
= s P = £ P
 a - o -
- L L
T T
= lo| =| hi =
= g P = P
// —r L // - L
z T

Figure 12.7: Three iterations of binary search.

By computing f(mid) we halved the interval where the answer is. This step can be
repeated until we get close enough to x. The example pseudo code iterates until it knows
x within prec of the exact answer.

1: procedure BINARYSEARCH(lo, hi, L, prec)
2 while hi — lo > prec do

3 mid < (lo+ hi)[2
4 if f(mid) < L then
5 hi < mid

6: else

7 lo < mid

8 return o

Competitive Tip

Remember that the double-precision floating point type only has a precision of about 10, If the
limits in your binary search are on the order of 10*, using a binary search precision of something
smaller than 10*™" may cause an infinite loop. As an example, the following causes a binary
search with precision 107 to fail.

208

N A AW N -

12.3. BINARY SEARCH

double f(double x) { return o; }
binarySearch(1e12, nextafter(iei2, 1e100), 0, 1e-7);

This happens because the difference between lo and the next possible double is larger than
your precision (that’s what the nextafter function generates). An alternative to handle precision
issues is to binary search a fixed number of iterations:

double binarySearch(double lo, double hi, double lim) {
for (int i = 0; i < 60; i++) {
double mid = (lo + hi) / 2;
if (1im < f(mid)) hi = mid;
else lo = mid;
}

return lo;

}

The complexity of binary search depends on how good of an approximation is required.
Originally, the interval we are searching in has length hi — lo. After halving the interval ¢
h‘ o If we binary search until our interval has some size p, this means
h’ 1o < p, which gives the bound log2 hizlo < ¢ For example,

times, it has size
we must choose ¢ such that

if we have an interval of size 109 and seek precision 1077, this would requlre log, 10'¢ = 54
iterations of binary search.

Problem 12.9.
Suspension Bridges suspensionbridges
Traveling Monk monk

A classical application of binary search is to find the position of an element L in a
sorted array A of length n. Applying binary search to this is straightforward, but it must
be adapted into its discrete variant, i.e. the domain of f(x) and the bounds lo and hi are
integers. At first, we know nothing about location of the element. It’s position can be any
of [0, n). Consider the middle index, mid = | % |, and compare A[mid] to L. Since A is
sorted, this leaves us with two cases:

o L < A[mid], in which case, since the array is sorted, any occurrence of L must be
strictly the left of mid, or
o A[mid] < L, and by the same reasoning, L can only lies to the right of mid.
We must repeat the search in one of the smaller intervals [0, mid) or [mid, n). At some

point the interval consists of a single element [i, i + 1). Then either A[i] = L, or L is not
present in the array.

1: procedure SEARCH(array A, target L)

2:

XA A

lo < 0, hi < |A]
while hi —lo > 1do
mid < | (lo + hi) /2|
if x < A[mid] then
hi = mid

209

https://heap.link/problem/suspensionbridges
https://heap.link/problem/monk

10:

11:

12:

CHAPTER 12. DIvIDE AND CONQUER

else
lo = mid
if x = A[lo] then
return lo
else
return —1

Competitive Tip

When binary searching over discrete domains, care must be taken. Many bugs have been caused
by improper binary searches.”

The most common class of bugs is related to the endpoints of your interval (i.e. whether
they are inclusive or exclusive). Be explicit about this, and take care that each part of your binary
search (termination condition, midpoint selection, endpoint updates) use the same interval
endpoints.

“In fact, for many years the binary search in the standard Java run-time had a bug: http://bugs. java.
com/bugdatabase/view_bug.do?bug_id=6412541

Exercise 12.10. Adapt the above binary search algorithm to find the smallest element
greater than L (this is the upper_bound STL function.

Exercise 12.11. Adapt the above binary search algorithm to find the greatest element that’s
less than or equal to L (this is the lower_bound STL function).

Exercise 12.12. Given two sorted lists of lengths a and b, find the k’th smallest integer of
their union in ®(log(a + b)) time.

Problem 12.13.

Guess the Number guess
Room Painting roompainting
Out of Sorts outofsorts

The discrete binary search can of course be adapted to any functions over discrete
domains, not only to find elements in an array. It can also be slightly generalised - it’s not
always necessary (or possible) to perform the split into intervals to recurse into right at
the middle.

Batmanacci — batmanacci
By Tomas Ken Magnisson and Bjarki Agiist Gudmundsson. RU AFLV 2016. CC BY-SA 3.0. Shortened.
Let us define the Batmanacci sequence in the following manner:

S1 =N
S2 = A

Sn = Sp—2+Sp-1

210

http://bugs.java.com/bugdatabase/view_bug.do?bug_id=6412541
http://bugs.java.com/bugdatabase/view_bug.do?bug_id=6412541
https://heap.link/problem/guess
https://heap.link/problem/roompainting
https://heap.link/problem/outofsorts
https://heap.link/problem/batmanacci

12.3. BINARY SEARCH

where + is string concatenation. Now we get the sequence N, A, NA, ANA, NAANA, ... Given n < 10° and
k < 10" what is the K’th letter in the N’th string in the Batmanacci sequence?

Solution. Sinces, = s,_2+5,-1, the character we're looking for must lie in one of two other
strings that are also a Batmanacci string: s,_, or s,,_;. Which one to search in depends
on whether the length of s,,_, is smaller than k or not. To compute the lengths /; of all
strings s;, note that they obey the recurrence I; = I;_, + I;_}, i.e. they are just the Fibonacci
sequence.

If k < I;_, the K’th character is in s,,_,, so we search for it in that string. Otherwise it’s
the (k — 1,,)’th character in s,,_;. At each step # is reduced by 1 or 2, so the complexity is
©®(n) after precomputing all ;. O

Binary Search over the Answer

Many optimization problems can be formulated as a decision problem as well. For example,
finding the longest path in a graph could be formulated as the decision problem “is there
a path of at least length [in the graph?” To solve the optimization problem, binary search
can be used over the decision problem to find the largest [such that there exists a path
of that length. Sometimes a problem becomes significantly easier as a decision problem®.
This technique is often referred to as binary search over the answer.

Heating Up - heatingup

By Alexander Dietsch and Bjarki Agist Gudmundsson. NWERC 2021. CC BY-SA 3. Shortened.
Jonas just entered a chilli-eating contest. He has a pizza consisting of # slices, each containing chilli
peppers. Initially slices i and i + 1 (1 < i < n), as well as 1 and #, are adjacent on the plate. Only one
slice can be eaten at a time, and must be finished before a new slice is started. Jonas can pick any slice
to eat first, but after that he is only allowed to eat slices that have at most one remaining adjacent
slice. The spiciness of each slice is measured in Scoville Heat Units (SHU) between 0 and 10" Jonas
has a certain spiciness tolerance, also measured in SHU, which corresponds to the spiciness of the
spiciest slice that Jonas can tolerate eating. Additionally, after eating a slice of kK SHU, his tolerance
immediately increases by k. Determine the minimum initial spiciness tolerance necessary for Jonas
to eat the entire pizza.

Solution. Whenever a problem asks you to determine the minimum or maximum of
something, your first thought should be whether a binary search helps. The problem has
the key property that if a tolerance of ¢t SHU is enough, so is ¢ + 1. Thanks to this, we can
binary search for the lowest tolerance that is enough and instead only solve the decision
problem: if the tolerance is t SHU, can Jonas eat the entire pizza?

This is easy to do in quadratic time. For each slice that requires at most t SHU to eat,
simulate how much Jonas can eat if he starts with that slice in linear time. To improve this,

*>This is unfortunately not the case for the longest path problem - the corresponding decision problem is
also hard to answer.

211

https://heap.link/problem/heatingup

CHAPTER 12. DIvIDE AND CONQUER

note that if Jonas starts eating slice i and can eat another slice j during the simulation, j
don’t need to be tested as the starting slice. If he can eat the pizza by starting at j, he can
do so starting at i too since his tolerance is higher once he reaches j compared to starting
there. A possible algorithm would then be to go through each slice in order, perform the
simulation, and then try the next slice that has never been eaten as the starting slice.

There’s nothing immediately suggesting that algorithm wouldn’t be quadratic. Theo-
retically, there could be a case such that if we start at slice i, we can eat all slices 1 < j < 1,
but not slice i + 1, nullifying our optimization entirely. Sometimes when we run into a
suspected problem like this, it’s a good idea to explicitly construct a test case that would
trigger the worst-case complexity. Either we get a case to analyze further in the hope of
improving our algorithm, or, as in this case, we encounter reasons for why a case like that
can’t actually exist.

The naive way of constructing a case would be to let slices have increasing tolerance
requirements, such that a slice requires a higher tolerance than eating all previous slices
would give us, i.e. t; =1+ Zé;} tj. That construction immediately runs into an obstable -
it would force the t; to grow exponentially, meaning there could only be a logarithmic
number of such slices. Based on this we might suspect that any case runs into a similar
issue, and we would be right.

Assume that a specific slice k is eaten A times when starting at slices to the right of i.
For each of those starting slices, let a; < a, < --- < a4 be the rightmost slice that could be
not eaten. When eating the starting slice that had a rightmost boundary of a;, all the slices
a;j with j < i must be eaten too, since they lie between k and a; (and by assumption we eat
slice k). As aresult t,, > Z;;} ta;, meaning they grow exponentially. Thus, each slice can
be eaten only O(log(max t;)) times over all tested starting points. As a consequence, the
whole simulation is O(nlog(max¢;)), which we need to run O(log(max¢;)) times. [

Problem 12.14.

Big Boxes bigboxes
Finn the Giant jattenfinn
Distributing Ballot Boxes ballotboxes
Free Weights freeweights
Ljutnja ljutnja

The degree to which the binary search is necessary varies from problem to problem.
It can often by a simplifying device for a problem where the optimization problem can
be solved directly but requires more intricate implementation compared to the decision
problem. One common use case where the binary search is essential is when maximizing
averages.

212

https://heap.link/problem/bigboxes
https://heap.link/problem/jattenfinn
https://heap.link/problem/ballotboxes
https://heap.link/problem/freeweights
https://heap.link/problem/ljutnja

12.4. CENTROIDS

Great GDP - greatgdp
By Olav Rgthe Bakken. Bergen Open 2019. CC BY-SA 3.0. Shortened.
In your homeland Treetopia, there is exactly one way of travelling between any pair of the N < 100 000
cites. A delegation from Cyclostan is coming to visit Treetopia. In order to impress the delegation,
you want to take them to parts of the country such that the GDP per capita is maximized across
the visited cities. The trip can include visiting cities on several branches in the country, and it is not
possible to travel through a city without visiting it. The one and only airport in Treetopia is in the
capital Treetopolis, and this is where the delegation from Cyclostan will arrive.

Solution. The problem with averages is that they are not easily additive. For an average
S = % > ", ai, the difference when adding a,.; to it depends on the length of S: “J%S
As such, optimization problems of a recursive nature often need to know not only the best
average obtainable for a subproblem, but the best average for each possible length. Binary
search helps us by reducing the optimization to a decision problem. Determining if it’s
possible to obtain an average at least S is equivalent to

%Zaizso(Zai)—n820©2(ai—5)20.

Suddenly the length of the sequence disappeared, only implicitly present in the number of
terms in the final sum.

In the original problem, the GDP per capita equals %—ii where g; is the GDP of the i’th
city, an p; its population. A binary search over the GDP per capita S turns the optimization
part into the decision problem Y(g; — p; - S) > 0. The problem is then to find a connected
subtree containing the airport such that this holds. Maximizing this value is much easier.
Root the tree in the capital vertex v, and let T(v) be the maximum value }(g; — p; - S)
in the subtree with v as root assuming that v is included, so that the answer is T(c,).
For each child ¢; of v it can either be included (contributing T(c;) to the value) or not
(contributing 0), so that

T(v) =g —pv-S+ Y max(0, T(c;)).

Computing this formula naively is amortized ®(#), plus a logarithmic factor for the binary
search. 0

Problem 12.15. Prosjek prosjek2

12.4 Centroids

So far we've seen structures where dividing an instance into smaller ones comes naturally.
Sequences can be split at half, grids into quadrants, and so on. We now turn our attention
to trees, for which the correct divide and conquer strategy might be less obvious. We show
three problems on this topic; a warmup showing a plethora of tree ideas, an interactive

213

https://heap.link/problem/greatgdp
https://heap.link/problem/prosjek2

CHAPTER 12. DIvIDE AND CONQUER

one where we learn about the centroid through a guest appearance from the area of stream-
ing algorithms, and finally an IOI problem that popularized the centroid decomposition
technique.

Network — network

Baltic Olympiad in Informatics 2015
In Byteland, all the n < 100000 computers in the country are connected by n — 1 direct links
between pairs of computers, such that there’s a sequence of links between any pair of computers. A
disadvantage of this setup is that if any single link is severed, the network is partitioned (i.e. there
will be two sets of computers that aren’t connected). Given the existing links, determine a smallest
set of links to add to the network, such that network won’t be partitioned by the breakdown of any
single link.

Solution. First, we need to understand what kind of network we are to construct. If a given
link {u, v} goes down, there must be another path between u and v. This is equivalent
to {u, v} lying on a cycle. A graph where this holds, i.e. that each edge lies on a cycle, is
called two-connected.

One common way forward for problems of this kind is to look for a reasonable lower
bound on the number of links that must be added, and prove that it coincides with the
upper bound as well through giving an explicit construction. If we study the example in
Figure 12.8, a lower bound pops up. Any vertex v that is a leaf in the graph must have a
new link added to it, or it is impossible for the single edge {v, u} adjacent to v to lie on a
cycle.

Figure 12.8: An example network and a possible solution with 3 new links.

A new link can be adjacent to at most two leaves, so if the graph has [leaves, at least
[%] new links need to be added. For more evidence in favor of this lower bound, note that
any optimal solution can be transformed to only adding edges between leaves.

Exercise 12.16. Prove that there’s an optimal solution where each link is added between a

pair of leaves.

There are several possible valid constructions that achieve this lower bound. A natural
recursive idea is to look at what happens to the graph when an edge is added between
two leaves. We claim that after adding the link {u, v}, the path between them can be

214

https://heap.link/problem/network

12.4. CENTROIDS

merged into a single vertex, with all edges adjacent to the path instead connected to the
new vertex. Each edge on the path is already on a cycle after the new link is added, so the
merge maintains that all edges remaining in the graph need to be placed on a cycle. If
it’s always possible to find two leaves where this operation reduces [%] by 1, this can be
repeated [%] times until the entire graph is only a single vertex, after which you’re done.
This would give an immediate O(#?) algorithm: for each pair of leaves, check whether
compressing the path decreases [%] (a linear time operation). Since we know that each
leaf must be chosen at some point, we can directly improve this to O(n*) by fixing one of
the leaves in the pair.

This algorithm is provably correct. Let’s focus on determining when merging the path
between a pair of leaves does not work out. Merging the path between u and v always
removes those two leaves, so if [%] doesn’t decrease, another leaf must have appeared. The
only possible case is that the vertex created by merging the path became a new leaf. That
vertex is only a leaf if all other vertices on the path had degree 2, except one which had
degree 3. When that happens, there must be some other leaf that lies on a path through
the vertex of degree 3. If the path to that leaf is also of this form, there can only be one
more leave in the whole tree it must be that there’s only one more leaf in the whole tree, a
case that’s easy to solve directly.

(%

u AN

Figure 12.9: To the left, a pair of leaves that creates a new leaf if merged. To the right, the only kind
of graph where this is true for each pair of leaves.

The fact that for each leaf u, there’s only a single leaf v that is not acceptable to add
a path between actually lets us improve this enough. By performing a DFS from u and
keeping track of how many vertices of degree 3 and < 4 seen so far, we can find another
leaf v and make sure it’s on a good path in time linear to the distance between u and v.
This is not strictly true - if v is the “bad” leaf for 1, we have to pay the cost for the DES to v
as well, but this happens with a sufficiently small probability for the average cost to be low
enough. With careful coding the path merging can be done in time amortized O(nlogn)
(or better, as we learn in the next chapter), by always merging the path into the vertex
with the highest degree and some other tricks.

We ended up with a long-winded solution from first principles that has a very icky final
step. In the real contest, this is not the approach anyone who got full points took. If you
were experienced enough to successfully work through all this reasoning and implement

215

CHAPTER 12. DIvIDE AND CONQUER

the last part in O(nlogn) time, you also probably know the following fact about trees:
there exists a vertex such that no subtree of that vertex has a strict majority of the leaves,
that we call the leaf centroid. Given a leaf centroid ¢, you can divide all the leaves into pairs
where the leafs are from different subtrees. By connecting each pair with a new link, you
are guaranteed to make the tree two-connected. The vertices in each path lie in different
subtrees of ¢, so the path must go through ¢ and cover all the edges from each leaf up to ¢ -
but each edge lies on a path from ¢ to a leaf.

The hard part is to find a leaf centroid. A greedy algorithm to find it comes out naturally
from trying to prove its existence. O

Exercise 12.17. Prove that any tree has a leaf centroid.

The reason we didn't immediately jump to the easy-to-code linear solution is because
the first solution contained ways to think about trees that are valuable in other situations,
and the “nice” solution is much harder to intuitively derive without prior experience.

The ending to this problem serves as a nice segue into the next problem, where we
need to find a similar central vertex.

Meeting Point — motesplatsen
By Joakim Blikstad. Swedish 10l Selection 2021.

N < 25000 friends (where N is odd) live on a tree, in one of the N vertices each. The friends want
to designate one of the vertices as their meeting point. The optimal meeting point v should have the
property that it minimizes the sum of the distances from each vertex to v. The distance between two
vertices is defined as the number of edges on the path between them. Unfortunately, the friends
can’t recall exactly how the tree looks. The only know, for any three friends living in vertices a, b,
and c, at what vertex v they meet when hanging out together, i.e. the vertex minimizing the sum
of distances from v to a, b and c. Up to 500 000 times, you can ask for the meeting point of three
friends. Find the optimal meeting point for all the friends.

Solution. Before anything else, you should solve the variant where you are given the entire
graph, to better understand the problem. A modification of the leaf centroid algorithm
finds the optimal meeting point in that case. Given a vertex v, if more than half of the
vertices in the tree lie on the other side of an edge {v, u}, the sum of all distances decreases
by moving to u. Consequently, there must be no such subtree for the optimal meeting
point. A vertex where this holds is called a centroid. Can there be more than one centroid?
Yes — but never more than two, if and only if there’s an edge where exactly half of the
vertices lie on each side. Since the problem guarantees an odd N this cannot happen.

Exercise 12.18. Prove that a graph with an odd number of vertices has exactly one centroid.

We have identified the vertex we're after, and a linear time algorithm to find it when the
graph is known. The problem might require us to find the centroid in another way than
through the standard procedure, but we should first try to see if it works. There are two
parts of the algorithm that need to be expressed through the questions from the problem:

216

https://heap.link/problem/motesplatsen

12.4. CENTROIDS

finding the neighbour that’s the root of the largest subtree, and determining the size of that
subtree. If we can do this, we're able to traverse into the majority subtree all the way to
the centroid. The primitive operation to build upon pops up if you think about what the
answers are to the questions where you fix the vertex a in the question and vary b and c.

Exercise 12.19. Given vertices a, b, and c, devise a way to determine whether b and c are
in different subtrees of a with a single question.

Thanks to Exercise 12.19, we can count the size of a subtree: pick a vertex in it, and
count the number of vertices that are in the same subtree, one at a time. To find the
neighbour that’s the root of the largest subtree, we need to make one more observation
by playing around with queries. For simplicity, we first introduce a useful concept for
working with rooted trees.

Definition 121 — Lowest common ancestor
In a rooted tree, for two vertices u, v we call the common ancestor of u and v that is
furthest away from the root their lowest common ancestor (LCA), denoted by lca(u, v).

There’s always at least a common ancestor since the root of the tree is the ancestor of
all vertices, so the term is well-defined. Also, since a vertex is considered to be its own
ancestor, it’s possible that lca(u,v) = u.

The LCA is tightly related to the optimal meeting point of three vertices, and has a
definition that’s much easier to reason with going ahead.

Exercise 12.20. Prove that the optimal meeting point of g, b and ¢ equals Ica(b, ¢) (if we
consider the tree to be rooted in a).

From now on, we'll use Ica(b, ¢) whenever we mean the optimal meeting point of a,
b, c whenever a root a is clear from context. Now, a simple follow-up tells us how to find
the root of the largest subtree.

Exercise 12.21. Prove that lca(b, ¢) is always closer to a than the furthest of b and ¢ is
whenever b # c.

A consequence of this is that in the largest subtree of 4, its root v is the only vertex for
which Ica(v, u) = v for any u in the subtree.

We can now design a solution to the first subtask where N < 99. Pick a random initial
vertex a. Exercise 12.19 lets us partition all other vertices into their subtrees to find the
largest one. By Exercise 12.21 we can also find the root of that subtree. We can then move

~ Y) we must have found the

to that vertex and set it as our new a. After at most 49 (~ 3

centroid.

Let’s count the number of queries this takes. For each a, the partitioning of all vertices
can be done in % queries by asking all pairs of questions for b and c. The same answers
are then used to find the root of the largest subtree of a. We never do this more than 49

times, for a total of 232 897 queries, well under 500 000.

217

CHAPTER 12. DIvIDE AND CONQUER

We give the solution to the second subtask (N < 999) as a short aside. Asking all pairs of
queries for a fixed a is actually enough to reconstruct the entire tree. This requires M =
497503 queries. In some interactive problems where you’re not given the underlying graph
explicitly, performing a full reconstruction using the provided queries is actually the right
solution (at least for a valuable subtask!), so it’s a good idea to keep in mind.

Exercise 12.22. Given a vertex a, prove that the meeting points for a fixed a and all pairs b
and c are enough to reconstruct the entire tree.

For a full solution, we need a different approach. The idea of moving towards the
centroid one step at a time is unfortunately doomed to fail. In the worst case the initial
vertex has distance 12499 to the centroid. This leaves us with only 40 queries per step to
find the largest subtree. Instead, we need a small shift in perspective. After finding the
largest subtree of a vertex v, we know that no vertex in another subtree could possibly
be the centroid. Therefore, we can compress all those subtrees into v as kind of a “super
vertex” that represents a group of vertices. We never have to ask any specific questions
about those vertices; it’s enough to know how many vertices v represents at all times.

Figure 12:10: Compressing all smaller subtrees into a super vertex.

To avoid the 12499 iterations, we must now realize that it's not actually important
to move closer to the centroid all the time. Since the compression step removes at least
one vertex (and hopefully more) from the tree at each point, a possible strategy is to just
randomly choose a vertex that have not yet been merged into a super-vertex.

Figure 1211: Performing the super vertex compression at randomly chosen vertices. Only the
unlabeled vertices (i.e. those not yet merged into a super vertex) are chosen.

Picking a random vertex every step fails on a common graph counterexample, the star
graph, which consists of a single vertex connected to N — 1 leaves. The star graph is a good
sanity check for tree algorithms, since it can sometimes bring out quadratic behaviour
from algorithms that seems to take linear time on random trees you generate yourself.

218

12.4. CENTROIDS

That's exactly what happens here. Since a leaf have no additional subtrees, no other vertices
are merged into a super vertex if a leaf is picked. More often than not, we would pick at
least half of the leaves.

Exercise 12.23. Prove that if a star graph has k leaves, the algorithm would pick at least %
leaves before picking the centroid with probability > 3.

A good vertex to pick would be one where the largest subtree is small — that’s when
the most vertices are eliminated. A small largest subtree corresponds to being as close
as possible to the centroid, since the largest subtree size decreases when moving towards
the centroid. This provides motivation for choosing not a random vertex, but the optimal
meeting point of three random vertices. Intuitively, that vertex should be on average closer
to the centroid than a random vertex. This method works for the star graph case, lending
further credence to it. We prove that a constant proportion of vertices are merged into a
super vertex in each iteration of this kind.

Exercise 12.24. Given any three vertices x, y and z, prove that their optimal meeting point
is one of Ica(x, y), Ica(x, z) or lca(y, z).

This characterization us useful, because on average the subtree of the LCA of two
randomly chosen vertices is big:

Exercise 12.25. Prove that if a and b are randomly chosen vertices in an N-vertex rooted
tree, the probability that the subtree of Ica(a, b) has at most gN vertices is g (where
0<g<.

Choosing three random vertices a, b, c, the optimal meeting point is one of their pair-
wise LCA. Since the probability of the subtree of a random LCA having at most gN vertices
is bounded by g, the probability that any of the three pairwise LCA’s having at most gN
vertices is bounded by 3q. This follows by the so-called union bound from probability the-
ory - that for random events gy, . . ., a,, the probability P(at least one event a; happens)
isbounded by P(a;) +--- + P(ay,). To find the worst case, we should try to assign as much
probability to the subtree being small as possible. Letting p(x) be the probability that
the subtree has size at most x N that means we want p(x) = 3x for 0 < x < g, so that the
subtree size is uniformly distributed between 0 and % The expected value of the subtree
size is then %. As such we should on average need log, (12499) < 6 rounds before having
eliminated all but one vertex. Sometimes we'll need a few more if we're unlucky, but with
high probability we’ll not need many more.

One final obstacle remains. We need a quadratic number of queries to find the largest
subtree, but can only afford a linear amount. It’s not strictly necessary to find the largest
subtree though. When not at the centroid, the tree we are looking for always has a strict
majority of all the vertices in the tree, so it's enough that we find the majority subtree,
determine that one doesn’t exist. The right idea comes from the solution to a famous

219

]

10:

11:

L *P N 2w Ao

CHAPTER 12. DIvIDE AND CONQUER

puzzle. In a sequence where one element occurs more than half of the time (called the
majority element), find it in linear time and constant extra memory.
Many majority-related problems are based on the following fact:

Exercise 12.26. Prove that if a sequence A has a majority element, removing two distinct
elements from a sequence does not change its majority element.

This lets us formulate a simple linear-time algorithm. Iterate through the sequence
A, and keep a list M of remaining elements. Whenever you get a new element a, check
M to see if it contains an element different from a, and, if so, throw away both of them.
Otherwise, add a to M. After iterating through all of A, M contains all elements of A after
throwing away pairs of distinct elements, so if A had a majority element, M has the same
majority element. Furthermore, M never contains two distinct elements; when the latter
of the elements were added, it would have been paired up with the first and thrown away.
Thus, M contains some occurrences of the majority element of A.

This algorithm uses more than constant extra memory though, since the list M can
in the worst case contain all of A. M only contains identical elements though, so we can
replace it with two simple variables instead: the element that M contains, and its count:

procedure MajorrTy(list A)
count < 0
el < ?
for a in A do
if count = 0 then
el=a
if a = el then
count < count +1
else
count < count —1
return el

This is called the Boyer-Moore majority vote algorithm.

Exercise 12.27. Prove that if A contains an element with frequency exactly one half, Majority
does not necessarily return it.

Exercise 12.28. Adapt the Majority algorithm to find a vertex in the majority subtree.

There’s no need to check after the fact that the subtree we found actually contains more
than half of the vertices. The only time it doesn’t is when the vertex we picked as root is the
centroid, but in that case it’s fine to compress any subtrees since none of them contrains
the centroid.

The number of queries is expected to be at most 28 - 12499 < 500000. Since the
number of remaining vertices quickly decrease, the number of queries we need is even
smaller. O

220

12.4. CENTROIDS

A long solution with many different steps, insights and detours.> Make sure to write your
own implementation to make sure you understood the solution to the (many) exercises in
the solution!

Problem 12.29.

We end the chapter with a divide and conquer classic that shows a famous centroid
technique: centroid decomposition.

Race - race
By Martin Fixman. International Olympiad in Informatics 2011. Shortened.

During IOI 2011, Pattaya City will host a race: the International Olympiad in Racing (IOR). As the
host, we have to find the best possible course for the race. Around Pattaya there are N < 200 000
cities connected by N — 1 bidirectional highways of integer lengths, such that there’s exactly one
sequence of highways connecting any pair of cities. The IOR regulations require the course to be a
path whose total length is exactly K < 1000 000, starting and ending in different cities. No highway
may be used twice on the course to prevent collisions. Find the smallest number of highways in a
possible course.

Solution. At a first glance, the problem looks like a bog-standard tree DP problem, but the
constraints quickly destroy all the normal ideas. A ®(N?) solution for the first subtask
(N £1000) comes immediately: check all the possible courses. For the subtask K < 100,
the right tree DP question is “what’s the path with fewest highways of length k that has
one endpoint at v and the other in the subtree of v?” These answers can be computed
simultaneously for all lengths k <100 given all the answers for the child vertices to get a
O (NK) solution, clearly not enough for the full problem.

Instead, we must generalize the divide and conquer approach to trees. When counting
inversions, the key insight was that an inversion has either both elements in one of the two
halves of the array or one element in each, so that it must cross the midpoint of the array.
The same applies here. If you pick any vertex v, the race course must either lie strictly
inside one of the subtrees, or it must pass through the vertex. The problem can thus be
reduced to only finding the best course that goes through v, and then recursively solving
the problem for each subtree. This can be done in linear time.

Exercise 12.30. Devise a linear time algorithm to find the best race course that passes
through a given vertex v.

Just any choice of v won't work, however. If we're not careful, we can recurse into a
subtree a linear number of time, degrading the performance to quadratic. The counterex-
ample from Meeting Point is applicable here again - for the star graph, choosing v as one

31f you got lost along the way due to the the probability theory, you might want to spend some time in a
discrete mathematics textbook to brush up your knowledge. In particular, the union bound is useful in the
proofs of some probabilistic algorithms.

221

https://heap.link/problem/race

CHAPTER 12. DIvIDE AND CONQUER

of the leaves leaves us with the same tree minus a single vertex, and by Exercise 12.23, this
happens a linear number of times with high probability. We have already learned what the
right choice of v is if we want small subtrees: the centroid. It’s not too hard to convince
yourself that the worst-case is a graph that is split into only two subtrees, with as even size
as possible, to get the time complexity recurrence T(n) = 2T(5) + ©(n), which we know
has the solution T'(n) = ®(nlogn). O

Problem 12.31. Cities cities

ADDITIONAL EXERCISES

Problem 12.32.
Bell Ringing
Routing

Graskrizja

Slikar

Mountain Running
Unscrambling a Messy Bug
Wi-Fi

Nice Path

Julmust

Fence Bowling
Financial Planning

bells

routing

graskrizja

slikar2
mountainrunning
unscrambling
wifi

trevligvag
julmust
fencebowling
financialplanning

NoOTES

The Boyer-Moore majority algorithm [8] was later generalized to find those elements with
at least frequency 1 by Misra and Grives [38]. While the Boyer-Moore algorithm was
devised in 1980, the paper written in the year after was not published until 1991, even
though it’s referenced (as a future paper) by Mirsa and Grives in 1982 as a paper “to be
published”. The Boyer-Moore paper, on the other hand, cites the Misra-Grives paper,
introducing a circular reference (which would be a problem if you apply the paper reading
strategy from Citations, pp. 161).

In this chapter, we have ignored plenty of divide and conquer algorithms that area of
theoretical interest, but is either too hard to be of practical use in most problem solving,
or not relevant for most contests. For example, the quickselect algorithm that can find
the k’th smallest element in an unordered list in ®(#) time, while neat, is not sufficiently
much better than the various ®(nlogn) approaches to warrant taking up space here. If
you're interested in how it works, you can read Hoare’s original paper [23]. Other topics we
skipped were e.g. faster matrix multiplication (such as the Strassen algorithm [50]). Again,
the algorithms that are simple enough to be of practical use don’t improve that much over
the ®(n?®) naive algorithm. One of the earliest notable divide and conquer algorithms

222

https://heap.link/problem/cities
https://heap.link/problem/bells
https://heap.link/problem/routing
https://heap.link/problem/graskrizja
https://heap.link/problem/slikar2
https://heap.link/problem/mountainrunning
https://heap.link/problem/unscrambling
https://heap.link/problem/wifi
https://heap.link/problem/trevligvag
https://heap.link/problem/julmust
https://heap.link/problem/fencebowling
https://heap.link/problem/financialplanning

12.4. CENTROIDS

is Karatsubd’s algoritm [27], developed by Russian mathematician Anatoly Karatsuba
and published in the early 1960’. It was the first example of integer multiplication in
sub-quadratic time (in the number of digits). While this is actually of practical use, it’s
significantly less efficient than Fast Fourier Transform based multiplication.

In this chapter we never had to do very hard analysis of time complexities. For more
complex divide and conquer recurrences, the master method is able to resolve most that
arise in practice. If you ever stumble upon one of them, that’s the primary tool to use (see
e.g. [11] for the details).

223

CHAPTER 12. DIvIDE AND CONQUER

224

CHAPTER 13

Data Structures

This chapter extends Chapter 6 further by showing some of the more advanced core data
structures that make an appearence in algorithmic problem solving. The approach is not
to explain the data structures directly. We instead present them in the same was as we
solve problems or derive algorithms, by gradually improving an initial naive solution using
additional insights. Some techniques shown in that process are useful in their own right,
so it might be worthwhile reading the description of a data structure you already know.
Not everything in the chapter is an actual data structure. Techniques such as square
root decomposition or merge smaller into larger are instead general techniques for different
data structures. On the other hand, something like two pointers is not even that. The
common theme is instead the type of problems that we solve, and to some extent what
algorithmic problem solving tradition has classified techniques as data structure related.

13.1 Union-Find

The first problem were studying has had many names througout history: set union, equiv-
alence, incremental graph connectivity, union find. It's most frequently called union find
in the algorithmic problem solving community, so that’s the name used in this book.
Union-Find is an easy to explain problem with a surprisingly short solution.

Union-Find - unionfind
Given the N 1000000 sets {1}, {2}, ..., {N}, process Q <1000 000 of the following queries:

e =a b - replace the sets containing a and b with their union,

o ? a b - determine whether a and b are members of the same set.

Solution. The problem is often formulated in terms of graphs. Given a graph containing
N isolated vertices, you need to support two operations: adding an edge between two
vertices a and b, and determining whether two vertices a and b are in the same connected
component. That’s exactly the same as Union-Find, since adding an edge between two
vertices is equivalent to merging their connected components.

The problem can easily be solved in O(NQ) time. Represent all sets explicitly using
vectors. The sets containing a and b can be found in O(N) time by looping through all
the sets and can then be merged by moving all elements from one of the sets to the other.

225

https://heap.link/problem/unionfind

CHAPTER 13. DATA STRUCTURES

A good way of attacking data structure problems with multiple query types is to first try
and make each individual query type faster than a naive solution. If we’re lucky, we might
come up with a data structure that can then be generalized to all query types. Let’s start by
looking at the ? type queries. To make them faster than O(N'), we need to quickly find the
set that a given element is in. The normal way is to designate one of the elements in each
merged set as its representative. Each element x stores its representative repr[x] in an array,
so that a and b are in the same set if and only if repr[a] = repr[b]. Initially each element
is in its own set, so repr[x] = x. When merging two sets, we pick the representative of
one set and update the representatives of all elements in the other set to be the first set’s
representative. Unions take no extra time, but reduces the time for » queries to ©(1).

In the worst case, the merge operations can still take linear time. For each union we
must choose which set should have its elements moved into the other set. If we merge the
set containing 1 with each other set in order, we'll update all values in the large set each
time if we're unlucky. There’s a natural fix though. It’s clearly better to always insert the
elements of the smaller set into the larger rather than the other away, a technique called
merge smaller into larger. This merging strategy has a worst-case amortized complexity of
®(log N) for a join query, while keeping constant time finds. If an element that is part
of a [-size set is merged into another (by assumption larger) set, the union set gets a size
> 21. The size of the set an element an element is moved into thus at least doubles every
time. Since the size can’t exceed N, this can happen at most log, N times. This holds for
each element, so in total there can be at most N'log, N times an element must be merged
into another set.

For further improvement, we must think differently. Let R(x) denote the representative
of the set containing x. When we merge two sets a and b, let’s only update repr of the
representatives of the set. More specifically, we set repr[R(a)] = R(b). It's no longer
possible to determine whether two elements are in the same set by comparing only repr
now, since this value is not necessarily equal to the representative of the entire set. This
new procedure is best explained by Figure 13.1. The main idea is to view each set as a
rooted tree, where repr[x] points to the parent of x in the tree. To merge two sets, it’s
enough to take the root of one tree (i.e. the representative of the set the tree corresponds
to) and set its parent to the root of the other tree. To find the representative of the set in
which the element x is present, we go upwards in the tree from x repeatedly by setting
x < repr[x], until we reach the root (an element with repr[x] = x. We are again presented
with the choice of which tree should point to the other. This time, the find operation takes
at most linear time in the height of the tree. Always pointing the smaller tree, measured
by the number of elements in it, into the larger guarantees that trees are logarithmic in
height. In the context of union-find, this is called union-by-size.

Exercise 13.1. Prove that the height of all trees are bounded by O(logn) if the smaller tree
is always pointed to the larger tree.

226

13.1. UNION-FIND

00600 @@:@ %@

(a) Initially, R(x) = repr[x] = x. (b) Union 3 into 0, setting (c) Union 1 into 2, setting
repr[R(3)] = R(0) = 0. repr[R(1)] = R(2) = 2.

() o
900 000
o o

(d) Union 1into 3, setting repr[R(1)] = R(3) = 0. (e) Union 4 into 2, setting repr[R(4)] = R(2) =0

Figure 13.1: Union-Find unions over 5 elements.

The representative R(a) is found by a simple recursive function. Union also has a
rather short pseudo code.

1: procedure UNION(a, b) 1: procedure FIND(a)

2 a < Find(a) 2 if repr[a] = a then

3 b < Find(b) 3: return a

4 if a = b then 4 return Find(repr[a])
5: return

6: if size[a] < size[b] then 1 procedure Size(a)

7 swap a and b 2 return size[Find(a)]

8 sizela] « size[a] + size[D] 1. procedure SAMESET(a, b)
o: repr[b] < a

2 return Find(a) = Find(b)

The implementation is short, but still of logarithmic complexity. We'll improve this with
a final touch. During the recursion to find the root R(a), we can update all elements on
the path have R(a) as their parent with this one-line change to Find to gain an asymptotic
speedup:

4: return repr[a] = Find(repr[a])

Intuitively, this compresses paths in the tree when they’re traversed, saving time during
future traverals. The complexity is instead amortized O(«(N)), where a(N) is the inverse
Ackermann function, an extremely slow growing function that we treat as ©(1) for all
reasonable N. We omit the proof here; see the notes for a reference if you're interested. [

227

CHAPTER 13. DATA STRUCTURES

Competitive Tip

To save memory, the size and repr arrays are often merged into one. Instead of using repr[a] = a
to signify that a is a root, we set repr[a] = —size[a] for those a that are roots. Then repr[a] is
negative if and only if a is a root. The necessary changes are to use —repr[a] instead of size[a],

and updating Find to check whether repr[a] < 0 instead of = a.

Interestingly, path compression is also enough to guarantee amortized logarithmic
time. It’s harder to prove that than union-by-size being amortized logarithmic though.

Problem 13.2.
Where’s my Internet wheresmyinternet

Tildes tildes

The way union-find is used in problems vary quite a lot. In our first example, the data
structure is only used to keep track of the sizes of connected components as edges are
added.

Bee Hives — bikupor
By Nils Gustafsson. Swedish Olympiad in Informatics 2021, Online Qualifiers.

Bie the Beekeeper is moving her bees out into old man Ljungstrom’s forest. The forest is an undirected
graph with N < 200000 vertices and M < 400000 edges. Bie may choose between 1 and N — K
vertices to place her bees on. Ljungstrom is also a beekeper, and will afterwards place his bees on the
K highest indexed vertices among those that Bie did not choose. His bees are unusually agressive,
so it’s important that none of his vertices are adjacent to any vertex Bie picked.

Given the layout of the graph and 1 < K < N, find a valid set of vertices that Bie should choose.

Solution. If there’s a vertex not adjacent to any of the K highest indexed vertices, Bie can
pick that vertex as her solution. Otherwise, let’s study the structure of a valid vertex set.
We borrow a page from the playbook for greedy constructions and look for constraints
that we can prove applies to at least one solution. The goal is to prove that there is ia valid
set with a simple structure that makes it easy to find.

Assume that the vertex with lowest index among those Ljungstrém picked is x. A
simple constraint is that we never need to pick a vertex with a lower index than x. In a
valid solution those vertices can be discarded since they don’t affect Ljungstrom’s choice.

A consequence is that if we throw away all vertices with an index below x, all of
of the N — x remaining vertices are chosen either by Bie or Ljungstrom. Call this new
graph G,. Both Bie’s and Ljungstrom’s vertices must be a set of connected components,
or Bie necessarily have a vertex adjacent to one of Ljungstrom’s. This gives us a cubic
solution: for each possible x, construct Gy, find its connected components with a DFS,
and choose Ljungstrom’s subset of in total K vertices using a quadratic time knapsack
DP. For a quadratic solution we need another constraint that removes the need for the
knapsack.

228

https://heap.link/problem/wheresmyinternet
https://heap.link/problem/tildes
https://heap.link/problem/bikupor

N

L ® N 2w ke

10:

13.1. UNION-FIND

Exercise 13.3. Prove that for some value of x, Bie can choose a single connected component
in the graph.

Now only some implementation work remains to reduce the solution to linear. Thanks
to Exercise 13.3 the only thing we need to know for each x is if there’s a component of size
(N - x) - K in G,. That’s where union-find enters. The only difference between G,
and G, is that the latter also contains the vertex x and it’s adjacent edges, so the sequence
of graphs Gn-1, Gn-2, . . ., Go can be constructed by only edge additions. A union-find
structure keeps track of all component sizes in the graph when new edges are added, so
we just need to keep track of them in a set for easy lookup.

: uf < new union-find structure
: sizes < new set
: fori=N-1to0do

sizes.add(1) D> Vertex i is an isolated component before its edges are added
for each neighbor j of i do
if i < j and not uf.sameSet(i, j) then D> Only add edges to previously added vertices
sizes.remove(uf .size(i))
sizes.remove(uf .size(j))
uf .union(i, j)

sizes.add (uf .size(i)) O

Exercise 13.4. Prove that for some value of x, Bie can choose the smallest connected
component in the graph.

Problem 13.5.
Killing Chaos killingchaos

Park park

Sometimes keeping track of the components is a more essential aspect of the problem.
We may also need to augment the union-find structure with more data. This is the case in
the following problem.

Subway Planning - subwayplanning
By Simon Lindholm. Nordic Olympiad in Informatics 2017.

The Stockholm subway system consists of N stations with N — 1 pairs of stations directly connected
by tracks, such that it’s possible to travel between any pair of stations. To minimize average commute
time, the city council has decided to change the subway. The new plan also consists of a set of
N —1tracks between the N stations, possibly with some tracks in common with the old plan. Each
weekend you may remove the tracks between one pair of stations and build tracks between another
pair of stations. It must be possible to travel between all pairs of stations after each weekend.

Compute the smallest number of weekends you need to implement the new subway plan, and
determine what track should be closed and opened during each weekend.

229

https://heap.link/problem/killingchaos
https://heap.link/problem/park
https://heap.link/problem/subwayplanning

CHAPTER 13. DATA STRUCTURES

Solution. The subway plans represent two trees. The task is to transform one into the
other by repeatedly replacing an edge with another while ensuring connectivity after each
replacement. If we were to make an optimistic guess about the number of times an edge
must be moved, wed probably guess at the only obvious lower bound: the number of
tracks in the new plan that are not present in the first plan, which by symmetry equals the
number of tracks only present in the old plan. This bound can be attained if and only if we
can remove an edge from the old plan and add an edge in the new plan every weekend. It’s
always possible to do so, and it’s easy to determine how in linear time for each weekend,
resulting in a simple quadratic algorithm.

Exercise 13.6. Prove that for any edge e present only in the new plan, it’s possible to remove
an edge from the old plan and add e during the same night.

For a faster algorithm, we must restrict which edge we move each night. Assume
that there’s a leaf in the old plan where its single adjacent edge is not present in the new
plan. This edge can always be chosen to be replaced by an edge from the new plan. Since
the edge was adjacent to a leaf, the new edge must also be adjacent to the leaf but have a
different second endpoint to keep the leaf connected. This other endpoint must be one of
the vertices to which the leaf is connected in the new plan, of which at least one must exist
if the new plan is a tree. If the edges of the tree are stored in adjacency lists, finding this
replacement edge is a as simple as picking any of its neighbours in ©(1).

The tricky part is to quickly find a leaf. An immediate obstacle is that a leaf of this
specific type might not exist, because all edges adjacent to a leaf in the old plan might be
present in the new plan too.

Figure 13.2: An example where the two plans differ with exactly one edge. Edges common to the two
plans are drawn in bold. The edges adjacent to the three leaves in the old plan are all present in the
new plan as well.

To fix this we must use another graph theoretical tool - that of edge contractions. We
already know that if an edge is present in both the old and the new tree, it will never be
replaced at any point. These edges are thus unhelpful in solving the problem. Given such
an edge {u, v}, we can contract it, meaning that the edge is removed and the vertices u

230

13.1. UNION-FIND

and v are replaced with a new vertex uv. An edge with adjacent to either u or v is instead
assigned the vertex uv as endpoint.

Exercise 13.7. Prove that if an edge is contracted in a tree, the resulting graph is still a tree.

In the graph where all the common edges are contracted, the same problem doesn’t
arise. It’s not immediately obvious why we can work on the contracted trees rather than the
original ones. The insight is that each set of vertices that makes up one of the contracted
vertices forms connected components after each night, since they contain only edges that
are present in the new plan. Thus, as long as each of these grouped vertices are connected,
the entire tree is connected too.

\

old , new

1

Figure 13.3: The same graph with all common edges contracted.

As the contracted graph in Figure 13.3 shows, a consequence is that there might be
both an old and a new edge connecting the same pair of contracted vertices. This is not
a problem, but it highlights that during the contraction process we must also keep track
of the original endpoints of each edge, so that we can output the exact edges moved each
night correctly.

Maintaining this contracted graph is where union-find enters. Contracting edges
is almost exactly what the union operation does. The main difference is that we must
still keep track of the edges that are adjacent to each contracted vertex (i.e. union-find
component). Augmenting the union-find structure with lists of what edges are adjacent
to each component — in both the old and the new trees — and merging them when two
components are joined due to an edge contraction is enough. O

Edge contraction can be used for general graphs as well, but then you have to be careful
about merging the component with fewer adjacent edges into the one with more adjacent
edges, or you would get a quadratic-time worst case. For trees this is not necessary.

Exercise 13.8. Prove that contracting edges with union-find in a tree is ®(N log N') with
the standard approach.

The merge smaller into larger trick is generally applicable when you're repeatedly
merging data structures for which insertions are fast, since the total number of insertions
is bounded by N'log N no matter the data structure.

231

CHAPTER 13. DATA STRUCTURES

Prominence - primarfaktor
By Nils Gustafsson. Swedish 101 Selection 2017.
What's the world’s highest moutain? The peak of Mount Everest. OK, but what’s the
second highest mountain? The second highest peak of Mount Everest, of course.

This exchange highlights a problem with ordering the world’s mountain peaks solely by their altitude.
A possible solution is to instead order the peaks by their prominence. The prominence of a peak is
the minimum altitude you need to descend to walk to to an even higher peak. By ignoring all peaks
with a too low prominence you avoid all the silly small peaks that are actually just a part of a higher
mountain.

Given a graph with N < 100000 vertices and M < 400000 edges, where each vertex has an
altitude, compute the prominence of each vertex, i.e. the minimum altitude you must descend on a
path to a vertex with a higher altitude. If it’s impossible to reach a higher altitude, the prominence is
equal to the altitude of the vertex.

Solution. Let’s start with a slow solution, where we try to find the prominence for only
a single vertex v. Since we're trying to find the minimum altitude at which something —
walking to an even higher peak - is possible, a binary search over the answer seems like a
decent attempt'. An answer h is possible if there’s a path from v to a higher peak when
restricted to passing only vertex at an altitude at most 4 less than the altitude of v. That’s a
plain connectivity problem, which we can solve with a DFS for a ®(M log N) solution.
A reduction to connectivity is a strong for a union-find solution. The standard trans-
formation to solve the problem for all vertices is replace the binary search with something
akin to a linear search instead. Start with the empty graph, and add vertices back in order
of descending altitude. When a vertex is added, all of its edges adjacent to a vertex at a
higher altitude should also be added. The first time that a vertex has a path to a vertex at a
higher altitude, the prominence of that vertex is given by the altitude of the vertex that
was just added. This change gives us a ®(N M) algorithm to find the prominence for all
vertices: after each vertex addition, partition the graph into its components and see which
vertices for the first time got another in the same component at a higher altitude.
Partitioning a graph into its components while adding edges to it quickly is exactly
what we have union-find for. Augment the union-find structure with a list of vertices in
each component that hasn’t yet found a path to a higher altitude vertex. Consider what
happens when an edge is added between two components, where the maximum altitude
vertex in them are h; and h; respectively. If h; > h,, all vertices in the second component
now gets a path to a higher altitude vertex, namely the one in the first component at
altitude h;. All vertices in the first component could already reach it, so none of the
vertices in that component finds such a path. Thus, after the merge we get an answer for
all remaining vertices in the second component, but still need to find the answer for all

"Unless you have cheated and learned some of the graph algorithms from Chapter 14 on your own, which
shows more standard approaches like a modified Dijkstras.

232

https://heap.link/problem/primarfaktor

13.2. RANGE QUERIES

remaining vertices in the first.

One small detail remains. By symmetry, we can handle the case where h; < h; as
well, but what if iy = h,? Then we can’t find a path to a higher altitude vertex for any
of the vertices in the two components. Instead, we must merge the two lists of vertices
we are yet to find the answer for. Since these lists never exceed the total number of
vertices in the respective components, this merge is amortized O(N log N') assuming we
do union-by-size. O

Exercise 13.9. Bandwidth 2 bandwidth2

13.2 Range Queries

We now turn our attention to queries on sequences, probably the richest topic in data
structure when it comes to algorithmic problem solving. They typically consist of solving
some given problem on an array of e.g. integers, but we have to solve the problems not
only for one array, but rather a large number of sub-arrays of a single, larger array. In
computer science, this is typically called a range query. Algorithmic problem solving
often mixes in the term “interval’, “segment” and “sub-array” when talking about the same
thing: a contigious subsequence of values in an array. This chapter freely mixes the terms
depending on what the predominant terminology is.

While it’s usually easy to solve the problem for a single interval in linear time, the
large number of queries often forces us to solve the problem in e.g. logarithmic time. The
common theme is precomputation - trading some extra memory by storing some relevant
values ahead of time to answer queries quickly.

Prefix Precomputation

The simplest of the range queries is to compute sums of different intervals.

Interval Sum
Given a sequence of integers do, a1, . . . , dn-1, you will be given Q queries of the form [L, R). For
each query, compute S(L,R) = ar + dp41 + - + ag-1.

Solution. The solution requires a transformation we have used before in the book, for
example in the section on digit DP. Instead of computing the sum of the interval [L, R), we
can just as well compute the sum of the interval [0, R) and remove the sum of the interval
[0,L), ie: S(L,R) = S(0,R) — S(0,L). This reduces the problem to only computing
the sums S(0, i). Of course we don’t need to do this in the naive quadratic manner by
computing each sum one at a time. Since S(0,i +1) = S(0, i) + a;, the sums can all be
computed in amortized constant time one at a time. O

This precomputation is called prefix sums. Problems rarely ask you to only compute sums
of individual intervals. Instead, it’s often a small tool in a more complex algorithm.

233

https://heap.link/problem/bandwidth2

CHAPTER 13. DATA STRUCTURES

This same technique works for any associative?, invertible operation, not only addition.
For example, Note that even operations we might normally think of as invertible aren’t
invertible for all elements, such as multiplication; the inverse operation is divisible, but
division by zero is undefined.

Exercise 13.10. Adapt prefix precomputation to work with multiplication, even where
some elements might be 0.

Another small caveat is that some care needs to be taken in case the operation is not
commutative.

Exercise 13.11. Let x be a non-commutative operation. Show how to compute intervals

a; * @i * -+ x a; using prefix precomputation.

Exercise 13.12. Show how to extend prefix sums to the two-dimensional case, i.e. given

a matrix of integers a; ; where 0 < i < N and 0 < j < M, compute sums of the form
t .

Sy Sl i quickly.

A common variation of prefix sums is to count the number of times each prefix appears.
The following problem is a normal application of the principle.

Counting Subsequences - subseghard
By Michal Forisek. Internet Problem Solving Contest 2006. CC BY-SA 3.0. Shortened
You are given a sequence S of integers we saw somewhere in the nature. Compute the number of
contiguous subsequences of S that sum to 47.

Solution. Applying the prefix way of looking at contiguous subsequences gives us the
solution immediately. Assume that a; + a;;; +--- + aj = 47. Letting S(i) = ag +--- + a;,
this is equivalent to S(j) — S(i —1) =47, or S(i — 1) = S(j) — 47. For each value of j, we
thus want to count the number of earlier prefixes with a given value. Keeping a running
count of all prefix values in e.g. a hash map as we sweep through the sequence to compute
prexies is enough for a linear-time solution. O

Problem 13.13.
Divisible Subsequences divisible

Sparse Tables
The case where a function does not have an inverse is a bit more difficult.

Interval Minimum

2 An operation « is associative if a x (b x ¢) = (a x b) * c.
3An operation * is commutative if a x b = b x a for all a and b.

234

https://heap.link/problem/subseqhard
https://heap.link/problem/divisible

O 00N A AW N =

-
o

13.2. RANGE QUERIES

Given a sequence of integers do, a1, . . . , an-1, you will be given Q queries of the form [L, R). For
each query, compute the value

M(L,R) = min(ar, ar+1,...,ar-1)

Generally, you cannot compute the minimum of an interval based only on a constant
number of prefix minimums of a sequence. We need to modify our approach. If we consider
the naive approach, where we simply answer the queries by computing it explicitly, by
looping over all the R — L numbers in the interval, this is ®(len). A simple idea will
improve the time used to answer queries by a factor 2 compared to this. If we precompute
the minimum of every pair of adjacent elements, we cut down the number of elements
we need to check in half. We can take it one step further, by using this information to
precompute the minimum of all subarrays of four elements, by taking the minimum of
two pairs. By repeating this procedure for very power of two, we will end up with a table
m[1][i] containing the minimum of the interval [/, [+ 2), computable in ®(N log N).

Sparse Table

vector<vi> ST(const vi& A) {
vector<vi> ST(__builtin_popcount(sz(A)), vi(sz(A)));
ST[e] = A;
rep(len,1,ST.size()) {
rep(i,o,n - (1 << len) + 1) {
ST[len][i] = max(ST[len - 2][i], ST[len - 1][i + 1 << (len - 1)1);
}
}
return ST;

}
[]

Given this, we can compute the minimum of an entire interval in logarithmic time.
Consider the binary expansion of the length len = 25 + 2% 4 ... 1+ 2k This consists of at
most log,len terms. However, this means that the intervals

[L,L+2M)

[L+2M,L+2k +2k)

[L+2F 4.2k Ly len)

together cover [L, L + len). Thus we can compute the minimum of [L, L + len) as the
minimum of log, len intervals.

235

1
2
3
4
5
6
7
8
9

-

o
11

B

CHAPTER 13. DATA STRUCTURES

Sparse Table Querying

int rangeMinimum(const vector<vi>& table, int L, int R) {
int len = R - L;
int ans = std::numeric_limits<int>::max();
for (int i = sz(table) - 1; 1 >= 0; --1) {
if (len & (1 << 1)) {
ans = min(ans, table[i][L]);
L += 1 << 1i;
}
}

return ans;

}

This is ©((N + Q) log N) time, since the preprocessing uses ®(Nlog N) time and
each query requires ®(log Q) time. This structure is called a Sparse Table, or sometimes
just the Range Minimum Query data structure.

We can improve the query time to @(1) by using that the min operation is idempotent,
meaning that min(a, a) = a. Whenever this is the case (and the operation at hand is
commutative), we can use just two intervals to cover the entire interval. If 2¥ is the largest
power of two that is at most R — L, then

[L,L+2F)
[R-2KR)
covers the entire interval.

int rangeMinimum(const vector<vi>§& table, int L, int R) {
int maxLen = 31 - __builtin_clz(R - L);
return min(table[maxLen][L], table[maxLen][R - (1 << maxLen)]);

}

While most functions either have inverses (so that we can use the prefix precomputa-
tion) or has idempotent (so that we can use the ®(1) sparse table), some functions do not.
In such cases (for example matrix multiplication), we must use the logarithmic querying
of the sparse table.

Segment Trees
The most interesting range queries occur on dynamic sequences, where values can change.

Dynamic Interval Sum
Given a sequence of integers ao, a1, . . ., an-1, you will be given Q queries. The queries are of two

types:

1. Given an interval [L, R), compute S(L,R) = ar + dp41 + -+ + dg-1).

236

]

LA T

13.2. RANGE QUERIES

2. Given an index i and an integer v, set a; := v.

To solve the dynamic interval problem, we will use a similar approach as the general
sparse table. Using a sparse table as-is for the dynamic version, we would need to update
©®(N) intervals, meaning the complexity would be ®(log N) for interval queries and
©@(N) for updates. It turns out the sparse table as we formulated it contains an unnecessary
redundancy.

If we accept using 2log N intervals to cover each query instead of log N, we can reduce
memory usage (and precomputation time!) to @(N) instead of @(log N). We will use
the same decomposition as in merge sort (Section 22). In Figure 13.4, you can see this
decomposition, with an example of how a certain interval can be covered. In this context,
the decomposition is called a segment tree.

Figure 13.4: The 2N - 1 intervals to precompute.

Usually, this construction is represented as a flat, 1-indexed array of length 2/'°%: N1,
The extraneous are set to some sentinel value that does not affect queries (i.e. o in the
case of sum queries). From this point, we assume N to be a power of two, with the array
padded by these sentinel values.

: procedure MAKETREE(sequence A)

tree < new int[2|N]|]
fori=|N|to2|N|-1do

tree[i] < A[i —|N|]
fori=|N|-1to1ldo

tree[i] < tree[2-i] + tree[2- i +1]

return P

In the construction, we label each interval 1,2, 3, ... in order, meaning the entire interval
will have index 1, the two halves indices 2, 3 and so on. This means that the two halves of
the interval numbered i will have indices 27 and 2i + 1, which explains the precomputation
loop.

237

1:

N

AN A Y

N

S A I

CHAPTER 13. DATA STRUCTURES

We can compute the sum of each of these intervals in ®(1), assuming the sum of all the
smaller intervals have already been computed, since each interval is composed by exactly
two smaller intervals (except the length 1 leaves). The height of this tree is logarithmic in
N.

Note that any particular element of the array is included in log N intervals — one for
each size. This means that updating an element requires only log N intervals to be updated,
which means the update time is @ (log N) instead of @(N) which was the case for sparse
tables.

procedure UpDATETREE(tree T, index i, value v)
index < i+ N
tree[index] < v
while index + 0 do
index < index/2
tree[index] < tree[2 - index] + tree[2 - index + 1]

It is more difficult to construct an appropriate cover if the interval we are to compute
the sum of. A recursive rule can be used. We start at the interval [0, N). One of three
cases must now apply:

« We are querying the entire interval [0, N)
« We are querying an interval that lies in either [0, 5) or [5, N)

« We are querying an interval that lies in both [0, §) or [, N)

In the first case, we are done (and respond with the sum of the current interval). In
the second case, we perform a recursive call on the half of the interval that the query lies
in. In the third case, we make the same recursive construction for both the left and the
right interval.

Since there is a possibility we perform two recursive calls, we might think that the
worst-case complexity of this query would be ®(N) time. However, the calls that the
third call results in will have a very specific form - they will always have one endpoint
in common with the interval in the tree. In this case, the only time the recursion will
branch is to one interval that is entirely contained in the query, and one that is not. The
first call will not make any further calls. All in all, this means that there will me at most
two branches of logarithmic height, so that queries are O(log N).

: procedure QUERYTREE(tree T, index i, query [L, R), tree interval [L’, R"))

if R<L' or L >R'then
return o

if L=L"and R = R’ then
return T[i]

M=(L'"+R")/2

238

13.3. SLIDING WINDOWS

Isum = QueryTree(T, 2i, [L, min(R, M)), [L’', M))
rsum = QueryTree(T,2i + 1, [max(L, M), R),[M, R))
return Isum + rsum

13.3 Sliding Windows

Two Pointers

Monotone Queues

ADDITIONAL EXERCISES

Exercise 13.14. Consider the union-find with neither path compression nor union-by-size.
Instead, assign each element x a randomly chosen value f(x), and merge the set with
the higher value f(repr[x]) into the one with the lower value. Prove that this is expected
O(logN) time.

Problem 13.15.

Loza loza

Rings rings

Almost Union-Find almostunionfind
Peaks peaks

NOTES

239

https://heap.link/problem/loza
https://heap.link/problem/rings
https://heap.link/problem/almostunionfind
https://heap.link/problem/peaks

CHAPTER 13. DATA STRUCTURES

240

Part 111

Other Topics

CHAPTER 14

Graph Algorithms

It is time to extend our knowledge of graph algorithms further. That graph theory makes
a return appearance is no coincidence: it’s one of the richest topics in algorithmic problem
solving and the one that takes the most space in the book. We already dealt with some of
the basics back in Chapter 8, and the next chapter on Flows and Matchings is dedicated
to just a specific sub-topic of graph algorithms. That there’s three whole chapters — not
to mention the many guest appearances in other chapters — on just graphs hopefully
reinforces its importance.

141 Weighted Shortest Path

The theory of computing shortest paths in the case of weighted graphs is substantially
richer than for the unweighted case. There are chiefly three algorithms that are used,
depending on whether all edge weights are non-negative or not and if we seek shortest
paths only from a single vertex or between all pairs of vertices. Non-negative weights is by
far the most common case, so that’s where we start. The algorithm typically used is called
Dijkstra’s algorithm.

Single-Source Shortest Path, non-negative weights — shortestpath
Given a graph where all edges have a non-negative weight, compute the shortest distances from a
given source vertex s to all other vertices.

Solution. The approach is similar to the inductive BFS algorithm, where we iteratively
compute the shortest distances to all other vertices ordered by distance. In the BES this
was simple: all neighbors of s has distance 1, their neighbors distance 2, and so on.

The same approach doesn’t work as-is for the non-weighted case. The crucial difference
is that even the shortest path to a vertex adjacent to s may first pass through another vertex
(Figure 14.1). To get around this we need a key insight: there must be at least some neighbor
of s where the shortest path is the direct edge from s. Specifically, the edge {s, v} with the
smallest edge weight (in Figure 14.1, that is the edge {s, d}) is always a shortest path to v.
Any path to v must pass through one of the edges adjacent to s, and thus would be at least
as long as the direct edge between s and v.

A generalization of this argument gives us Dijkstra’s algorithm. Assume that you have
found the distances of the n vertices closest to s, and call the set of these vertices C. We

243

https://heap.link/problem/shortestpath1

CHAPTER 14. GRAPH ALGORITHMS

Figure 14.1: An example where the shortest path from s to the adjacent vertex ¢ passes through
several other vertices. Vertex d is the one closest to s.

claim that the (n + 1)’th closest vertex v has a neighbor u in C such that a shortest path to
ViISSs == u—>v.

For a proof, consider a shortest path to v. Let {u, v’} be the first edge on this path
where u is in C and v’ is not, so that v/ is a neighbor of C. Since v’ is on the shortest path
to v it holds that d(s,v") < d(s,v) (Exercise 14.1). But v is the next closest vertex to s of
those not in C, so we also have d(s,v") > d(s,v) meaning that v and v' must have the
same distance. Thus v/ is also a (1 +1)’th closest vertex, and it does indeed have a neighbor
u in C such that its shortest pathis s — --- > u —» v.

Exercise 14.1. Let s - v; — --- — v, be a shortest path from s to v,,. Prove that s - v; —
-+ = v; is a shortest path to v; for all i.

(a) The base case: the closest vertex to s is the (b) The second closest vertex to now has distance
neighbor with the shortest edge. 3, also a neighbor.

(c) Among the two remaining vertices, the one at (d) Finally, we find the distance of last vertex,
distance 5 is closest to s. which is 6.

Figure 14.2: An example of Dijkstra’s algorithm finding the distances in a graph.

244

1:

N

10:
11:

12:

14:
15:

[

AR I

L ® N 2w B e

14.1. WEIGHTED SHORTEST PATH

This insight results in a similar iterative algorithm, exemplified in Figure 14.2. Initially
the set of vertices C of the i vertices closest to s consists only of s. We then repeatedly
extend C with one additional vertex at a time, by looping through the neighbors of C and
picking the one of these that are closest to s.

Formalizing the algorithm leads us to a O(V?) complexity and the following pseudo
code:

procedure DjKSTRASLOW (source vertex s, vertex set V')
dists < new int[| V] filled with oo

dists[s] < 0 D> Base case: s is at distance 0 to itself
C <« {s}
while C # V do D> V is as usual the set of vertices in the graph
next < -1
dist « oo

for each u € C do
for each edge (v, weight) of u where v ¢ C do
toDist « dists[u] + weight
if toDist < dist then
next < v
dist < toDist
dists[next] < toDist
add next to C

return dists

What remains is an exercise in optimization. The first one brings us down to quadratic
time. Instead of running the loop on lines 9-13 for every ¢ € C each time, we can keep
track of what the best distance is so far for each vertex to at all times, and only run the
loop once a new vertex is added to C. In fact, we can reuse the dists array for this in the
following way:

procedure DyKSTRAQUADRATIC(source vertex s) 1: procedure UPDATE(vertex u)
dists < new int[|V|] filled with oo 2: for each edge (v, weight) of u do
dists[s] < 0 3 toDist « dists[u] + weight
while C = V do 4 if toDist < dists[v] then
v < the vertex not in C with the lowest value s: dists[v] < toDist
of dists[v]
Update(v)
addvto C
return dists

The way this is written is perhaps closer to how you would perform the algorithm by
hand, scribbling the currently best distance next to each vertex, updating them as you
add new vertices to C. Update is called exactly once for each vertex, so takes amortized
time @(E). The main loop on lines 4-6 in DijkstraQuadratic takes ®(V?) time instead —

245

O N AWV AW N e

10

CHAPTER 14. GRAPH ALGORITHMS

it makes V iterations, with a linear-time find operation on line 5. In total, this takes time
o(V?).

The final optimization is to speed up the linear step on line 5. Instead of finding the
minimum distance among the remaining vertices by scanning through the array, you can
store all of them in a priority queues instead, reducing the worst-case time complexity to
©(Elog V) instead. This is typically coded using a set<pair<int, int>>in C++ rather than
an actual priority queue. We show C++ code to demonstrate short way of implementing it:

const int INF = numeric_limits<int>::max();

// G is an adjacency list, storing edges as (destination, weight) pairs
vector<int> dijkstra(vector<vector<pair<int, int>>>§ G, int s) {
vector<int> D(G.size(), INF);
D[s] = o;
set<pair<int, int>> Q;
Q.emplace(o, s);
while (!Q.empty()) {
int next = Q.begin()->second;
Q.erase(Q.begin());
for (auto ed : G[next]) {
int v = ed.first;
int dist = D[next] + ed.second;
if (dist < D[v]) {
if (D[v] !'= INF) {
Q.erase(make_pair(D[v], v));

}
D[v] = dist;
Q.emplace(D[v], v);
}
}
}
return D;

}

In the C++ code we no longer represent the set C explicitly at all. Instead, Q contains
the remaining vertices with a non-oo distance and loops until there are none left. The
other major change is some book-keeping to make sure that Q is actually kept up to date
when the known best distances change. 0

Exercise 14.2. Throughout the solution we have never mentioned anything about whether
edges are directed or undirected. Does the solution assume that edges are undirected
anywhere?

Some people prefer to implement Dijkstra’s algorithm using real priority queues instead
of sorted sets in C++. The downside to this is that it’s not possible to update values in a
C++ priority_queue, so you have to insert a new value if you find a shorter distance. The
time complexity is the same, but the memory complexity is O(E) rather than O(V'). Our
experience is that this is sometimes worse by a non-trivial constant factor, and almost
never better.

246

14.1. WEIGHTED SHORTEST PATH

Problem 14.3.
Cross Country crosscountry
Human Cannonball humancannonball

Our first example deals with how a shortest path can be reconstructed using the
distances computed.

Shopping Malls
By Jon Ander Gomez. Southwestern Europe Regional Contest 2013. CC BY. Shortened.
A shopping mall has N < 200 different sections, and M < 1000 different connections of four types:
walking paths, stairs, lifts and escalators. We want to create a smartphone application to help visitors
calculate the shortest path between some pairs of locations in the mall. Given a set of Q < 1000
pairs of points F, T, compute a path from F to T that requires the least walking.

The sections are located on different floors, each of which can be represented as a 2D plane. The
distance between two adjacent floors is 5 meters. Each of the M connections connect two points
A and B and can be used in either directions. When using a walking path or stairs, the distance a
customer must walk equals the Euclidean distance between the points. A lift on the other hand only
requires 1 meter of walking: 0.5 m when entering and exiting. Finally, an escalator only requires
walking 1 meter when moving from A to B, but you can also use it to walk in the opposite direction
of escalation. Then it instead requires walking a total of 3 times the Euclidean distance between B
and A.

Solution. The sections and corrections together describe a weighted graph. Some care
must be taken when adding the edges due to the complicated rules on how much walking
is actually involved for each connection. After that it’s a standard application of shortest
path, where one invocation of Dijkstra’s algorithm for each query results in the acceptable
worst-case complexity @(QM log N) (or even better ®(NM log N)) by running Dijkstra
once for each starting point).

The problem is not satisfied with only knowing the shortest distance for each query
though, but wants us to reconstruct a shortest path. This is done almost in the exact same
way as in the breadth-first search case. For each vertex v, we need to know what the
previous vertex on its shortest path is, and then backtrack along these starting at the goal.
To find the previous vertex, we must each time we find a new best distance to v also store
what vertex was used to find this distance. While this might be updated several times, you
know that it’s the last time you find a better distance to v that determines the previous
vertex on its shortest path. O

Problem 14.4.

Passing Secrets passingsecrets
Block Crusher blockcrusher
Robot Turtles robotturtles

247

https://heap.link/problem/crosscountry
https://heap.link/problem/humancannonball
https://heap.link/problem/passingsecrets
https://heap.link/problem/blockcrusher
https://heap.link/problem/robotturtles

CHAPTER 14. GRAPH ALGORITHMS

Just as in the undirected case, the graph you are supposed to find a shortest path in
might not be given explicitly. Finding the reduction to a graph problem by figuring out
what a vertex is supposed to represent and what edges is sometimes the goal of a problem.

Problem 14.5.
Full Tank fulltank

The set of edges used for path reconstruction forms a directed spanning tree called a
shortest-path tree. If the graph is undirected, we direct the edges away from s along the
shortest paths. When a graph contains multiple shortest paths from a source there is a
useful generalization of this tree, formed by all edges that lie on any shortest from s to
another vertex in the graph. If there are no zero-length cycles (zero-length undirected
edges in the undirected case), this subgraph forms a directed acyclic graph called the
shortest-path DAG.

Exercise 14.6. Let G be the graph containing only (directed) edges that lie on some shortest
path from a vertex s to another vertex in the graph. Prove that any path from s in Gisa
shortest path.

Intercept — intercept

By Marc Vinyals. KTH Challenge 2014. CC BY-SA
The Stockholm subway network consists of N < 100 000 stations. There are M < 100 000 one-way
lines between some pairs of stations, each of which take different times 0 < w; < 10° to travel.
Fatima commutes from KTH to home by subway every day, between the stations closest to KTH
and her home. Today Robert decided to surprise Fatima by baking cookies and bringing them to an
intermediate station. Fatima does not always take the same route home, but she always optimizes
her travel by taking the shortest route. List all possible stations Robert can go to in order to surely
intercept Fatima.

Solution. Call the stations closest to KTH and her home s and ¢, respectively. No subway
line takes 0 time to travel, so the graph containing all the shortest paths from s forms a
DAG. In this problem were not interested in all edges on a shortest path, only those on a
shortest path to t. They also form a DAG since they’re a subset of the shortest path DAG.
To compute the shortest-(s — t)-path DAG we use the following fact.

Exercise 14.7. Let d;(x) be the distance from s to x, and let d;(x) be the distance from x
from t. Prove that an edge u — v with weight w lies on a shortest path from s to ¢ if and
onlyif dy(t) = ds(u) + w + dy(v).

By this equality, it’s enough to compute d; and d; to find the DAG. Running Dijkstra’s
algorithm from s gives us d;, and once more from ¢ but with all directed edges reversed
gives d;. The problem is now equivalent to finding those vertices that any (s — t)-path
must pass, a surprisingly difficult problem. Later on we learn how to these vertices with a
single DFS, but instead we show another useful technique.

248

https://heap.link/problem/fulltank
https://heap.link/problem/intercept

14.1. WEIGHTED SHORTEST PATH

With dynamic programming it’s easy to compute the number of paths p from s to ¢ in
the graph. Furthermore, we can compute the number of paths p;(v) from s to any vertex
v, and the number of paths p;(v) from v to t. The number of (s — t)-paths passing v is
ps(v) - pe(v), which is equal to p if and only if all paths pass through v. Unfortunately p
can be exponential in N and easily overflows 64-bit integers. To get around this, compute
p, ps and p; modulo a random large prime M (on the order of 2*° to avoid overflow issues).
The probability that the equality holds modulo a large random prime even if the two sides
aren’t equal is very small (something like 1% over 100 test cases). O

Problem 14.8.
A Walk Through The Forest walkforest
Customs Control customscontrols
Sometimes Dijkstra’s algorithm is the right idea, but modeling the problem in a small
enough graph may require some ingenuity.

Trams - bybana
By David Warn and Fredrik Ekholm. Swedish 101 Selection 2021.
The public transport of Stackville consists of a tram system with N < 10° stations and M < N lines.
A line is an ordered sequence of stations. A trip consists of boarding the tram at any one of those
stations and exiting it at any other station. Together, the M lines make at most 3 - 10> stops.

To avoid that people take very short trips instead of walking, the municipal government has
introduced a pricing system where the price of a trip is proportional to its waste. The waste of a trip
is defined as the number of stations on the line that the trip does not pass. For example, if a line
consists of the stations (3,7,5,2,1,9), a trip between stations 1 and 5 has a waste of three, since the
stations 3, 7 and 9 were not passed.

Compute the minimum possible sum of the wastes when traveling from station 1 to N through
a series of trips.

Solution. The obvious solution is to create a graph with an edge for each possible tram
trip and run Dijkstra’s algorithm on it. Unfortunately there can be on the order of 10"
such edges, far too many. There’s a beautiful solution that’s almost as short as the naive
solution.

Exercise 14.9. Prove that there exists an optimal series of trips where each trip is to or
from either the first or the last station on the tram line that is taken.

The authors didn’t find this insight when first solving the problem. Our solution is a
good example of how to model similar processes with graphs, so we show it as well.

Let a line consist of the stations ay, as, .. ., 4, and consider a given trip from a; to a;
where a; < a; (the case a; < a; is handled similarly). The waste then equals the number of
stations to the left of i which is i — 1, plus the number to the right of j which is m — j. These
numbers are independent of each other, so we can model the cost of the trip as paying
two different fees: i — 1 when boarding the tram at station 7, and m — j when exiting it at

249

https://heap.link/problem/walkforest
https://heap.link/problem/customscontrols
https://heap.link/problem/bybana

CHAPTER 14. GRAPH ALGORITHMS

station j. Since these costs are associated with a linear number of origins and destinations
rather than a quadratic number of possible trips, we hope that fewer edges are needed.

P ELAVETR S AVER L

2 3

Figure 14.3: An example encoding the line with stations (3,7,5,2,1,9)

To encode all this in a graph, first introduce a vertex v; representing standing at station
i. For each line I, add vertices u; ; representing traveling on the I’th tram from first to
last station, currently being at its s’th stop. Three kinds of edges then needs to be added
for each u; s: one edge with the cost to board the line, one edge with the cost to leave
the line, and then one edge with the cost to travel on the line to the next station (see
Figure 14.3). O

Problem 14.10.
Moving Walkway rullbandet

Finally, we end our treatment with a small modification of Dijkstra’s algorithm. This
shows you that the algorithm is not only capable of computing shortest paths in a graph,
but is rather a more general framework for certain kinds of inductive computations. The
difference is often a change in how “distance” is defined.

Crocodile
By Mihai Patrascu. International Olympiad in Informatics 2011.
Archaeologist Benjamas is trying to escape the mysterious Crocodile’s Underground City. The city
has N < 100000 chambers and M < 1000 000 bidirectional corridors, each connecting a pair of
chambers, the i’th of which takes t; time to run through. Some of the chambers are exits that allow
her to escape.

Benjamas starts in chamber 0 and wants to reach an exit chamber as quickly as possible. The
Crocodile gatekeeper wants to prevent Benjamas from escaping by controlling secret doors that can
block a single corridor at a time. More specifically, when Benjamas enters a chamber, the Crocodile
can choose at most one of the corridors adjacent to the chamber and block it. Benjamas can then
leave the chamber through any of the adjacent corridors except the blocked one. When Benjamas
enters the next chamber, the Crocodile may again choose the block one of the outgoing corridors
(possibly the corridor that Benjamas just followed), whereupon the previously blocked corridor is
opened.

Help Benjamas construct an exit plan that minimizes the maximum time the Crocodile can
force Benjamas to remain in the city. An exit plan consists of an instruction for each chamber that’s

250

https://heap.link/problem/rullbandet

14.1. WEIGHTED SHORTEST PATH

not an exit chamber, that tells Benjamas through which corridor she should exit, or if that corridor
is blocked, which through corridor she should exit instead. It is guaranteed that such an exit plan
exists.

Solution. Let’s first try to characterize the best possible escape time from a given vertex. If
you could, you would always try to go through the corridor that gives the quickest escape.
Symmetrically, that’s the corridor that the Crocodile would block. More formally, if a
chamber have adjacent corridors that take t,, ¢,, . . . seconds to run through, and they lead
to corridors where you can escape in at most py, p3, ... seconds, the Crocodile will block
the corridor that minimizes t; + p;, so you will pick the second best option. This leads to
a new definition of “distance” from a chamber v to an exit, that we must compute.

To see if this can be attacked with a variation of Dijkstra’s algorithm, we should try to
formulate a similar inductive way of repeatedly determining the escape time for vertex
at a time. Initially, we know the escape time only for the chambers that are exits: it is 0
seconds. Assume that the escape times of the K chambers with shortest escape times are
known. What must hold for the chamber v with the (K + 1)’st shortest escape time? Can
it be the case that the two corridors from it resulting in the best escape times lead to other
chambers than one of those K? By the definition of the best escape time for a chamber,
the escape time of v is always greater than that of its two best adjacent chambers, and
since v has the (K + 1)’st shortest escape time, those two chambers must be among those
with the k shortest times. This gives us a way to find the chamber v. Among all chambers
adjacent to at least two of the K chambers with the shortest escape times, take the one that
minimizes the second-best escape time to one of those chambers.

As with the plain Dijkstra’s algorithm, this immediately translates into a cubic algo-
rithm. To get the worst-case time down to ® (M log N) you then apply the same optimiza-
tions. Note that it’s the second-best escape time that the chambers in the queue should
be sorted by, so you need to always keep track of the two corridors with the best and the
second-best escape times for each chamber. O

Among all shortest path problems, those where you have to modify Dijkstra’s algorithm
are among the most common and varied ones, so we give unusually many exercises on the
theme.

Problem 14.11.

Hopscotch 50 hopscotchso
Single source shortest path, time table shortestpath2
Millionare Madness millionairemadness
Emptying the Baltic emptyingbaltic
Tide tide

251

https://heap.link/problem/hopscotch50
https://heap.link/problem/shortestpath2
https://heap.link/problem/millionairemadness
https://heap.link/problem/emptyingbaltic
https://heap.link/problem/tide

1:

20

3
4
5
6:
7
8

CHAPTER 14. GRAPH ALGORITHMS

Negative weights

When edges can have negative weights, the idea behind Dijkstra’s algorithm no longer
works. It is very much possible that a negative weight edge somewhere in the graph could
result in a shorter path back to a vertex that Dijkstra’s algorithm has already determined
the distance to. An alternative inductive idea still works, but results in a slower ®(VE)
algorithm.

Single-Source Shortest Path, negative weights — shortestpath3
Given a graph where all edges have a (possibly negative) weight, compute the shortest distances
from a given source vertex s to all other vertices.

Solution. We need to draw some help from one of our old tools, namely dynamic pro-
gramming. As is often the case in DP, the right idea is to compute something stronger
than what the problems asks for. For shortest paths, the right problem to solve is instead:
what’s the shortest distance to a given vertex v that uses at most k edges? Since a shortest
path includes each vertex in the graph at most once, choosing k = |V| — 1 is equivalent
to what we're actually looking for. One might come to think about this stronger version
by looking at the BFS, which in a very similar spirit iteratively finds all vertices at most k
edges away from the source.

The DP then recurses on the number of edges used. To get to a vertex v using at most
k edges, you must first get to one a vertex with an edge pointing at v using at most k — 1
edges, and then traverse that final edge. Letting D(k, v) denote the distance to v using at
most k edges, the right recursion is

0 ifv=s
D(k,v) =min{ D(k-1,v) ifk>0
min,_(, ,yeg D(k—1,u) +w(e) ifk>0

The bottom-up implementation of this is wonderfully short. By evaluating the recursion
for all v at the same time for a given k, it's enough to iterate through the entire edge list to
find the right values.

procedure BELLMANFoRD(vertices V, edges E, vertex s)
D « new int[|V[][| V] filled with co

D[0][s] < O D> The base case of the recursion
fork=1to|V|-1do
D[k] = D[k -1] > The second case of the recursion

fore = (u,v) € Edo
D[k][v] = min(D[k][v], D[k —1][u] + W(e))
return D[|V|-1]

These two nested loops together take @(VE) time.

252

https://heap.link/problem/shortestpath3

N

AR A T

14.1. WEIGHTED SHORTEST PATH

In practice, Bellman-Ford is implemented in a shorter way. Instead of storing all the
values of D(k, v), we keep only a single value D(v) that is always a lower bound of D(k, v)
and maintain that it is so after each iteration of the loop on line 4. As a bonus we get away
with ®(V) memory instead of ®(V?), a win for sparse graphs.

: procedure BELLMANFORD(vertices V, edges E, vertex s)

D « new int[| V][] filled with oo
D[s] <0
fork=1to|V|-1do
fore = (u,v) € Edo
D[v] = min(D[v], D[u] + W(e))

return D

We mentioned that Bellman-Ford doesn’t work if there are negative length cycles.
In concrete terms, this means that the distances doesn’t converge, since you can attain
arbitrarily short distances with arbitrarily short walks. This takes O(E) time by the
following exercise:

Exercise 14.12. Prove that a vertex has an arbitrarily short distance if and only if it’s
reachable from a vertex v where D(|V|-1,v) > D(|V],v).

The above holds true even for the simplified version where D(v) is only a lower bound

on D(k,v) after each loop iteration. O

The most interesting part about Bellman-Ford is working with negative length cycles,
so that’s the topic of our example problem.

Wormholes — wormholes2

By Jaap Eldering, Gerben Stavenga, and Jan Kuipers. NWERC 2009. CC BY-SA. Shortened
A friend of yours has built a spaceship recently and wants to explore space. It takes t seconds to travel
between two points with Euclidean distance . wormholes2 During his first voyages, he discovered
that the universe contains N < 50 wormholes created by aliens that transport the ship through
time and space. Each wormhole connects two distinct points in space and has a given time shift
-10° < d; < 10° when traveling through it. They are also created by the aliens at different times
~10° < t; <10° at which point it becomes available for travel. Given the current position of your
ship at time 0 and a given position that you and your friend wants to explore, compute the earliest
possible arrival time.

Solution. On the surface a plain shortest path problem where wormbholes are edges be-
tween points in space, and the time shift of an edge is its weight. A small modification
needs to be made to whatever shortest path algorithm used to add some extra weight when
trying to use a wormhole before it is created.

Unfortunately the negative time shifts discard Dijkstra as an option, and Bellman-Ford
fails due to negative length cycles, or at least it would in the general case. In the given

253

https://heap.link/problem/wormholes2

CHAPTER 14. GRAPH ALGORITHMS

task each edge has an earliest time at which it can be traversed, so one can never arrive
at a point at an arbitrarily early time — Bellman-Ford would eventually converge to the
right answer. This can take a long time however, since the shortest walk can contain on
the order of N - 10° edges! While running Bellman-Ford a bunch of extra times would be
correct, it’s simply too slow. To fix it, we need some clever optimization.

Once you are able to traverse a wormhole exactly at the time of its creation, that
wormbhole can never again be used to arrive even earlier to its destination. Consequently,
if there is a negative length cycle in the graph (by necessity including a wormhole), we
could travel around that cycle repeatedly until we reach a wormhole before it’s created,
and then remove it. Since there are at most N wormbholes, we would only need to identify
a negative length cycle and simulate traveling along it at most N times before eliminating
all negative length cycles.

Simulating traveling around a negative length cycle until it breaks is a fun implemen-
tation task, but identifying one is slightly harder - until now we’ve only described how to
find the set of vertices reachable from a negative length cycle. The trick is to reuse the path
reconstruction mechanism from Dijkstra’s algorithm, i.e. for each vertex keeping track of
the edge last used to improve the distance to it. Normally this produces a shortest-path tree,
but if a negative length cycle exists it will appear in this set of edges instead after running
Bellman-Ford plus the extra iteration needed to ensure negative cycles are detected.

Exercise 14.13. Prove that:

1. a cycle in the path reconstruction graph is a negative length cycle in the original
graph.

2. if a graph contains a negative length cycle, the path reconstruction graph must have
a cycle.

Finding a cycle in a graph can be done in O(E) time with a single DFS, so the total
complexity is dominated by the N Bellman-Ford iterations taking O(V?E) = O(V*)
time. O

Problem 14.14.
Dangerous Skiing dangerousskiing
XYZZY Xyzzy

All-Pairs Shortest Paths

For a dense graph, the ®(V?) version of Dijkstra beats the otherwise faster ®(Elog V)
version. Consequently it never takes more than ®(V?) time to find the distance between
every pair of vertices, and for sparse graphs @(VElog V) is considerably faster. When
edges can have negative weights Dijkstra no longer works, but a remarkable algorithm lets
us keep the ®(V?) complexity.

254

https://heap.link/problem/dangerousskiing
https://heap.link/problem/xyzzy

14.1. WEIGHTED SHORTEST PATH

All-Pairs Shortest Paths - allpairspath
Given a graph where all edges have a (possibly negative) weight, compute the shortest distance
between each pair of vertices.

Solution. As usual, assume that all vertices are numbered 0, 1, ..., |V| — 1. Say that
you want to compute the shortest path from v to u, and that this path happens to be
v = a; » --- - a; — u. Take a; to be the highest-numbered vertex on the path. The
shortest path can now be split up into two smaller shortest paths: one from v — a; and one
from a; — u. In both of these smaller paths, any intermediate vertices have lower numbers
than a;. Thus it would be enough to first compute all paths where the intermediate vertices
are less than a;. The same thing applies for any such path s - b; — --- > by — t too,
except this time the highest b; is smaller than the highest a;. This breaking down can't
continue forever though. At some point the smaller paths will be single edges x — y,
which serves as the base cases.

If welet D(i, j, k) be the distance from i to j where all intermediate vertices at between
0 and k, this results in the recursion

w if i — jis an edge of weight w
D(i, j,k) =min{ D(i, j, k1)
D(i,k, k=1) + D(k, j,k —1)

In the second case the vertex k doesn't lie on the path. In the third it does, whereupon we
recursively find the two smaller paths as described.
The algorithm is never written in a top-down manner. Bottom-up, it’s very compact:

: procedure FLOYD-WARSHALL

D < new int[|V[][|V[][|V]] filled with oo

DJ[0] < the weighted adjacency matrix of the graph D> This handles the base cases

fork=0to|V|-1do

fori=0to|V|-1do
forj=0to|V|-1do
D[k][i][j] = min(D[k - 1][7](j], D[k - 1][#][k] + D[k - 1][k][j])
return D[| V| —1]

The same shortening trick that we used for Bellman-Ford works here too, i.e. that it’s
enough to store a single distance matrix D(i, j) and make sure that D(i, j) < D(i, j, k) as
we loop over k. The shortened version is what's known as the Floyd-Warshall algorithm
and takes ©(V?) time.

: procedure FLOYD-WARSHALL
D « the weighted adjacency matrix of the graph
fork=0to|V|-1do
fori=0to|V|-1do

255

https://heap.link/problem/allpairspath

CHAPTER 14. GRAPH ALGORITHMS

forj=0to|V|-1do
D[i][j] = min(D[i][j], D[i][k] + D[K][j])

return D

Finding pairs of vertices at an arbitrarily short distance is much easier than for Floyd-
Warshall.

Exercise 14.15. Prove that

1. if v lies on a negative length cycle, then D(v,v) < 0.

2. if D(v,v) <0, v lies on a negative closed walk.

The DFS step needed by Bellman-Ford is unnecessary since checking if v can reach u
is equivalent to D(v, u) # oco. O

Exercise 14.16. Adapt Floyd-Warshall to allow for reconstructing paths.

Transportation Planning - transportationplanning

By Greg Hamerly. Baylor Competitive Learning course. CC BY-SA
As a city planner, you have spent a lot of time building a set of two-way roads so that people can
get from anywhere in the city to anywhere else just by driving on the roads. Now that that’s done,
you are concerned with how much time commuters spend on the road each day, and how you can
reduce this. You have modeled the city as a set of N' < 100 intersections connected by M < w
roads. You have come up with a measure of the total commute time: it is the sum of the shortest
driving time between all pairs of intersections in the city using the available roads. You have gotten
the city to agree to build one more road between two existing intersections, and you want to add a
single road that will reduce this measure of commute time the most. Which road should you add?

Solution. Thanks to Floyd-Warshall we can in ®(N?) time find the original commuter
times between all pairs of intersections. If the distance between two intersections u to
v decreases after an edge {a, b} is added, it must be because that edge is used on an
even shorter path. There are only two possible distances including this edge: d(u, a) +
w({a,b})+d(b,v)ord(u,b)+w({a,b})+d(a,v). Thusits easy to find the improvement
for any pair u, v after adding a single edge in ®(1), giving a total time complexity of
O(N*). O

The problem raises a general question: how do you maintain the Floyd-Warshall
distance matrix when additional edges are added? In general, when an extra edge {a, b}
is added, any new shortest paths in the graph has either g or b is an intermediate vertex,
except possibly for the path between a and b itself. Handling this is the whole point of the
Floyd-Warshall DP, so it’s enough to run two more iterations where k = a, b respectively.

256

https://heap.link/problem/transportationplanning

14.2. EULERIAN WALKS

Problem 14.17.
Kastenlauf kastenlauf
Transportation Planning transportationplanning

Secret Chamber at Mount Rushmore secretchamber

In most problems that requires solving all-pairs shortest path the ®(V?) complexity
of Floyd-Warshall is fine. Only when the graph has no negative weight edges, is sparse,
and has more than a few hundred vertices is Dijkstra’s algorithm the right way.

14.2 Eulerian Walks

In Chapter 8, you had the chance to solve some exercises on the topic of Eulerian Walks.
At that point we only asked you to verify whether a walk was Eulerian or not. It’s now
time to learn how to construct them.

Eulerian Walk — eulerianpath
Given a directed graph, find a walk — a path on which vertices don't have to be distinct - starting
and ending at arbitrary vertices (possibly the same) that uses each edge in the graph exactly once.

Solution. There are two necessary conditions for the existence of an Eulerian walk. First of
all, the graph must be weakly connected, meaning that it would be connected if all edges
were undirected. Secondly, since each time the walk enters a given vertex it must also exit
that same vertex, the in-degree of a vertex must equal its out-degree. At least, this must be
true except if the walk starts and ends in different vertices. Then the first vertex must have
an out-degree 1 more than its in-degree and the last an out-degree 1 less. As luck would
have it, these simple criteria are also sufficient.

We focus on the case where the walk starts and ends at the same vertex, the other
case is similar. The basis of the solution is to pick a vertex and arbitrarily walk along a
previously unused edge for as long as possible.

Exercise 14.18. An arbitrary walk starting at a vertex v eventually arrives at a vertex without
edges to follow. Prove that this is v.

Let this path be p; - p> = ...p, — p1. If we were lucky, this path might have
included each edge in the graph. In the other case, the following must hold.

Exercise 14.19. Prove that if there are any unused edges left, at least one of them is outgoing
from one of the vertices p;.

Let p; be one of these vertices with an outgoing unused edges. If you from p; perform
the exact same kind of walk, you will again get some walk p; - g1 = -+ = g, — p;. This
extra walk can then be spliced into the original one, so that it goes

P> Pi Q1> > m > Pi 7 Pivl .

257

https://heap.link/problem/kastenlauf
https://heap.link/problem/transportationplanning
https://heap.link/problem/secretchamber
https://heap.link/problem/eulerianpath

[

B o®

CHAPTER 14. GRAPH ALGORITHMS

These two steps can be repeated until there are no edges left, at which we have produced
an Eulerian walk.

Time complexity is then a matter of implementation. Naively this is quadratic in the
number of edges, but performing these walks in a smart manner similar to a DFS lets us
find the walk in linear time.

: procedure EULERWALK(vertex v)

for each unused edge v — u do
mark v — u as used
EulerWalk(u)

prepend v to the walk

Effectively, this recursion first finds the tour p and then backtracks up to the last p; that
still has an unused edge. There, it repeats the procedure by splicing in the new tour g
recursively, before then backtracking further back in the path p.

Exercise 14.20. Prove that for the case where one vertex s has an extra out-degree and
another vertex t has an extra in-degree, the algorithm works as long as the walk starts
from s.

Exercise 14.21. Prove that the same algorithm works in the undirected case, but that the
degree condition is that all vertices must have even degrees, except that exactly two vertices
are allowed to have an odd degree.

A small detail makes the implementation a bit complex. While iterating through all
neighbors of v, it’s possible that the walk will again visit v and try to iterate through all
neighbors. To avoid conflicts between multiple calls with the same v, use adjacency lists
and pop an edge at the time from the back of the list:

while (!edges[v].empty()) {
int u = edges[v].back();
edges[v].pop_back();
EulerWalk(u);
}
The recursive procedure is sometimes popularly written in an iterative manner using a
stack, but our experience is that at least in C++ this makes little difference. O

Problem 14.22. Acrobat acrobat

The algorithm we described is called Hierholzer’s algorithm. The other well-known
algorithm is called Fleury’s algorithm. Its original description leads to an inefficient
algorithm, but the following modified version runs in linear time.

Exercise 14.23. Let G be a weakly connected directed graph where each vertex has equal
in-degree and out-degree. Pick a vertex v and find a directed spanning tree where all edges
point towards v. Perform a walk in the graph, never using an edge twice, and using an

258

https://heap.link/problem/acrobat

14.3. THE DEPTH-FIRST SEARCH

edge in the spanning tree only if it is the last out-edge from a vertex. Prove that this walk
is Eulerian.

Many problems use the general insights that Hierholzer’s algorithm is based on, rather
than explicitly looking for Eulerian walks.

Fair Secret Santa
A competitive programming club with N' <100 000 members is hosting a secret Santa gift giving
event. Among the members M < 300 000 pairs have been selected, each in which one of the members
should to buy a gift for the other. For the sake of fairness, it has been decided that everyone should
give and receive the same number of gifts. This is not possible if a person is in an odd number of
pairs. They may then receive either one more or one less gift than the give. Decide for each pair of
members which of them should give a gift to the other.

Solution. The problem can be formulated as asking for the edges in the graph to be directed,
where a directed edge a — b represents a giving a gift to b. Each vertex should then have
an equal in-degree and out-degree (for an even degree) or they must differ by at most one
(for an odd degree).

Odd degree vertices can be iteratively eliminated from the problem two at a time.
Pick any odd-degree vertex and perform a walk using each edge at most once. This walk
is guaranteed to end up at another edge by the same arguments as for Euler walks. By
directing the edges on that walk in the direction of traversal, an intermediate person on the
path will give and receive one additional gift, while the endpoints either gives or receives
one extra gift. After removing this path the first and last vertex have an even number of
edges too. Once all vertices have an even degree it’s easy to find a direction of all edges
such that the in-degree and out-degree are equal: find an Euler cycle for each connected
component. O

For extra credit, note that we didn’'t need to find Euler cycles specifically, a decomposition
into multiple cyclic walks is fine too. In fact a graph containing an Eulerian cycle can
always be partitioned into simple cycles as well as required, with a similar algorithm.

Problem 14.24.

Railroad railroad2
Catenyms catenyms

14.3 'The Depth-First Search

We first studied the depth-first search in Chapter 8 together with the breadth-first search.
So far it’s been used mainly for two purposes: as a shorter version of the BES when we're
traversing a graph without regard to order, and as a way of traversing a rooted tree in a way
such that all descendants of a vertex are processed before the vertex itself. In this section
we show more powerful applications, solving a few standard problems centered around

259

https://heap.link/problem/railroad2
https://heap.link/problem/catenyms

CHAPTER 14. GRAPH ALGORITHMS

various notions of connectivity. These applications are slightly different depending on
whether the graph is directed or not, so we start with the simpler, undirected case. They
are based on the fact that the DFS generates a special type of spanning tree in graphs.

Normal Spanning Tree — normalspanningtree
In a graph G, let T be a spanning tree that has been rooted in some vertex. If, for each edge {u, v}
in G, either u is an ancestor of v or v is an ancestor of u in the rooted tree T, we call T a normal
spanning tree.

Figure 14.4: In the above graph, a normal spanning tree is marked by the bold edges.
Given a connected graph on N < 100000 vertices and M < 300000 edges, find a normal
spanning tree.

Solution. Asis often the right approach for tree problem, we look for some kind of recursive
construction. Studying the normal spanning tree in Figure 14.4, we might notice that,
ignoring the non-tree edges going up to a4, the subtrees rooted in b and f are themselves
normal. In fact, any subtree is normal (except that there might be edges going to an
ancestor of the subtree’s root).

Exercise 14.25. Prove that any subtree of a normal tree is also normal.

More interestingly, this is also a sufficient condition: if the subtrees of the root in the
tree are normal, the whole tree is so too. Each edge either lies strictly within a normal
subtree and thus by definition goes between a vertex and its ancestor, or it goes up to the
root which is always an ancestor to the other end of the edge.

We can now give a constructive proof by induction that any graph contains a normal
spanning tree rooted in any vertex. Consider an n-vertex graph, and assume that any
graph up to size n — 1 vertices have a normal spanning tree. Pick an arbitrary vertex v to
be the root of the spanning tree, and consider the connected components that would form
if v was removed from the graph. For each component, find a normal spanning tree in it
with a root that was a neighbor of v in the original graph. By connecting the root of each
of these smaller trees with v, we get a normal spanning tree of the entire graph.

As described this method runs in quadratic time. Splitting the graph into components
takes linear time, and we might have to do this a linear number of times (for example if
the graph is a single long path).

260

https://heap.link/problem/normalspanningtree

LA I

w ohow

14.3. THE DEPTH-FIRST SEARCH

procedure MAKETREE(vertices V, vertex root)
for each component C of V' \ {root} do
find a neighbor u of root in C
add (root, u) to the tree
MakeTree(C, u)

To speed this up, keep track of the partitioning into components implicitly instead. When
picking the first component C and root u, clearly any neighbor of root can be chosen. After
constructing the tree rooted at u, all vertices in the component to which u belongs have
been added to the tree, so to find a vertex in a different component any neighbor of root
that hasn’t get been added to the tree can be chosen, and so on, leading to the following
simplification:

procedure MAKETREE(vertex root)
for each neighbor u of root do
if u has not been added to the tree then
add (root, u) to the tree
MakeTree(u)

You should recognize this pseudo code - it’s exactly a depth-first search. O

This property of the DFS is usually explained the other way around, i.e. by showing that
the DFS tree is normal. We prove this too, to gain further understanding of the DFS tree.
Assume that {u, v} is an edge in the graph, and that without loss of generality u is visited
before v during a DFS. Since v is a neighbor of u, we know that v must be visited before we
have finished processing u. When that happens, thereis some pathu — x; = -+ = xx = v
the DFS took in order to get to v (it might be that k = 0 and the path is 4 — v), which is
part of the DFS tree. That means the DFS tree contains a directed path from u to v, so
that u is indeed an ancestor of v. Finally, not only are DFS trees normal, but any normal
spanning tree can be found by a DFS that visits vertices in some specific order:

Exercise 14.26. Prove that every normal spanning tree is also a DFS tree.

Problems that specifically require a DFS, i.e. are not just based around finding a
spanning tree in general, in one way or another use that the tree is normal.

Joint Excavation - jointexcavation
By Timon Knigge. NWERC 2020. CC-BY SA.
A mole family recently decided to dig a new tunnel network. The layout consists of N < 2 - 10°
chambers and M < 2 - 10° bidirectional tunnels connecting them, forming a connected graph.
Mother mole wants to use the opportunity to teach her two mole kids how to dig a tunnel network.
As an initial demonstration, mother mole is going to start by digging out a few of the chambers
and tunnels, in the form of a non-self-intersecting path in the planned tunnel network. She will

261

https://heap.link/problem/jointexcavation

CHAPTER 14. GRAPH ALGORITHMS

then divide the remaining chambers between the two kids, making sure that each kid has to dig out
the same number of chambers.

Since the kids do not have much experience with digging tunnel networks, mother mole realizes
one issue with her plan: if there is a tunnel between a pair of chambers that are assigned to different
kids, there is a risk of an accident if the kids happen to excavate the tunnel from their respective
chambers at the same time.

Help mother mole decide which path to use for her initial demonstration, and how to divide
the remaining chambers evenly, so that no tunnel connects a pair of chambers assigned to different
mole kids. The initial path must consist of at least one chamber and must not visit a chamber more
than once.

Solution. The hardest part of the problem might be to even consider that a DFS is the right
solution. Now that we have learned about the connection between the DFS and normal
trees, there is a small hint: we are seeking a partition where no edges go between the two
parts. That is similar to the key property of a normal spanning tree, that edges don’t go
between the subtrees of the root.

We formulate a solution in terms of the quadratic-time method used to construct a
normal spanning tree. Pick an arbitrary vertex where mother mole starts her path and
partition the remaining graph into its connected components. Order these components
arbitrarily and give as large of a prefix of components as possible without exceeding %
chambers to the first kid, and a corresponding suffix to the second kid. Either all chambers
were evenly split, or there is one component remaining. We let the mother’s path continue
into that component, and do the same thing: splitting the remaining vertices up into
components and giving as large of a prefix and suffix to the kids as possible, without any
one of them exceeding % assigned chambers, including those given in the previous step.

The process continues precisely as long as there is at least one unassigned chamber
left, but must be finite. Assume that it stops after the mother has dug a path through K
chambers. By construction, no kid ever has more than 25X assigned chambers - if at
any point one kid was assigned exactly # chambers, the other kid could be given all

the remaining chambers for an even split. Since exactly N — K chambers aren’t on the
N-K

>
There is also a more direct solution, is almost the analogue of moving to the linear-time

mother’s path, if all of them are assigned each kid must have gotten exactly

construction of a normal spanning tree. During a DFS, each vertex can be classified into
as having been visited and backtracked from, having been visited but not yet back-tracked
from, and not yet having been visited. In a DFS, there is never an edge between a vertex
that has been visited and backtracked from, and a vertex not yet visited — otherwise we
wouldn’t have backtracked from that vertex yet. Initially, there are 0 vertices of the first
kind and N vertices of the third kind, while in the end, there are N vertices of the first kind
and 0 of the second. Each step during the DFS either increases the number of backtracked
from vertices by 1, or decreases the number of unvisited vertices by 1. As such, these two
numbers must at some point be equal, providing us with a valid partition. O

262

14.3. THE DEPTH-FIRST SEARCH

Problem 14.27.

Biconnected Components

The DEFS tree is very useful in a large number of graph connectivity problems thanks to the
fact that different subtrees are only connected by their common ancestors.

Definition 141 — Biconnectivity

Consider a connected, undirected graph. If removing a vertex v (and its adjacent edges)
results in a disconnected graph, the vertex is a cutvertex. If the graph lacks cutvertices,
it is biconnected. The maximal vertex subsets that are biconnected are the graph’s
biconnected components. If removing an edge {u, v} disconnects the graph, the edge is
a bridge.

Most textbooks define a biconnected graph slightly differently, in that they require the
graph to have at least 3 vertices. We deviate in this chapter from the normal definition
since it lets us avoid treating bridges as exceptions in a few theorems on biconnectivity.

Figure 14.5: A graph with 4 biconnected components (encircled), 3 cutvertices (black vertices), and
one bridge (bold edge).

As Figure 14.5 shows, a vertex can be part of multiple biconnected components. This
occasionally makes it a bit messy to look at biconnected components as sets of vertices.
The following fact enables us to view the components as sets of edges instead.

Exercise 14.28. Prove that two biconnected components have at most one vertex in com-
mon.

263

CHAPTER 14. GRAPH ALGORITHMS

Consequently, no two biconnected components can both contain the ends of an edge
{u, v}. However, there is always some biconnected component that contains both u and v.
Since {u, v} itself a biconnected subset it is also part of some maximal biconnected subset.
Combining these two facts, we see that the biconnected components are a partition of the
edge set.

Biconnected components, and the DFS in general, are in a sense about describing
interconnectivity between the cycles of a graph. The most important fact in understanding
them is the following.

Exercise 14.29. Prove that all edges in a cycle graph belong to the same biconnected
component.

As you might have spotted from Figure 14.5, bridges and cutvertices can be described
in terms of the biconnected components of a graph.

Exercise 14.30. Prove that

1. an edge is a bridge if and only if it is the only edge in a biconnected component.

2. avertex is a cutvertex if and only if it's shared by two biconnected components.

Biconnected Components - biconnectedcomponents
Decompose an undirected, connected graph with V' < 100000 and E < 300000 edges into its
biconnected components.

Solution. Finding biconnected components is surprisingly straightforward. They fall out
as part of a single DFS with some extra bookkeeping.

Figure 14.6

In Figure 14.6 one possible DFS tree of the graph in Figure 14.5 is shown, having started
the DFS in a. Four edges of the DFS tree are marked in bold, defined as those edges u — v
for which there is no back edge from v’s subtree that goes further up in the tree than u.

264

https://heap.link/problem/biconnectedcomponents

1:

2:

10:

11:

12:

L ® N 2w &

14.3. THE DEPTH-FIRST SEARCH

We now claim two things: each such edge u — v is in a different biconnected component
than any of the other edges adjacent to u, and every other tree edge lies in the same
biconnected component that the immediately preceding tree edge lies in. In other words,
the biconnected components are found by starting at bold edge and traversing the tree
edges downwards, stopping at any other of the bold edges. The biconnected components
in our example are thus {f, g,d}, {b,c.d, e, a}, {j, i, h} and { h, e}, matching what we
knew beforehand.

For the first claim, let 4 — v be such an edge and assume that one of s neighbors
w is in the same biconnected component as u and v. If we remove u, v and w are still
connected, so there is some path starting in v that ends at w. Since the DFS tree is a normal
tree, the only edges that aren’t between two vertices within v’s subtree are back edges that
point to one of v’s ancestors. As w is not in v’s subtree, the path to w contains at least one
such edge. We've removed u though, so that back edge must also be a to an ancestor of u,
but by how we chose # — v no such backedge exists, contradicting that w is part of the
biconnected component.

To prove the second part we use Exercise 14.29. Consider two edges that immediately
follow in the tree, p — u and u — v such that there is a back edge from v’s subtree to an
ancestor of v, we can construct a cycle by going p - u — v, then continuing down to the
back edge, moving along it to v’s ancestor, and finally going down in the tree to p. Since
both edges were on a cycle, they belong to the same biconnected component.

To find the bold edges in linear time, keep track of the current depth in the tree and
compute how far up in the tree each subtree has a back edge during a DFS. To avoid an
extra DFS to also find the components, you typically push all edges (including back edges)
you see onto a stack, and once you backtrack from a bold edge, pop everything up to that
edge into a new biconnected component.

D < new int[]
procedure BicONNECTEDDFS(v, d)
Dv] < d
mind, < d
for each non-parent neighbor u of v do
if u is unvisited or D[u] < d then
push {v, u} to the stack
if u is unvisited then
mind, < BiconnectedDFS(u,d +1)
if mind, > d then
pop all edges up to and including {v, u} as a new component
mind, < min(mind,, mind,)

mind, < min(mind,, D[u])
return mind,

It’s easy to miss the second condition on line 6, which guarantees that the back edges are

265

CHAPTER 14. GRAPH ALGORITHMS

only added in the correct direction (from the descendant up to the ancestor). O
Problem 14.31.

Cave Exploration caveexploration

The Elk elk

Most problems on biconnectivity are straightforward after identifying the components,
cutvertices and bridges. There are problems that require at least some further understand-
ing of the concept however, not seldom being based around the connectivity properties of
the DEFS tree.

Directing Streets - directingstreets
In a city, there are N < 100, 000 road junctions, where M < 300 000 pairs of junctions are connected
by a road. You want to make all roads in the city one-way, so that travel is only allowed in one
direction on the road”. However, it's important that you can still travel between any pair of road
junctions in the city. Determine whether it’s possible to direct the roads in this manner, and if so,
what direction each road should have.

@A directed graph created by making all edges in an undirected graph directed is called an orientation of the
graph.

Solution. As is the case with many DFS problems, you have to first figure out that the
DFS tree is the key to solving the problem. We get that hint in this problem by finding
a simple criterion for when it's impossible to direct the roads, namely the graph can’t
contain a bridge. Remember from the last problem that when u — v isn’t a bridge, we
could construct a path from v back to u by going from v to a back edge further down in
the tree that connected upwards to an ancestor of u. If you take a look again at the DFS
tree in Figure 14.6, you'll note that this path only traverse edges in the direction that the
edges point, i.e. tree edges away from the DFS root and back edges towards it.

Since the DEFS tree spans the whole graph, you can always start at the root of the tree
and move along the directed tree edges to any vertex in the graph. Using the trick above,
you can also go from any vertex in the tree back to the root. Together, this lets you move
between any pair of vertices by first going back to the root and then down in the tree to

your target. O
Problem 14.32.

One-Way Streets onewaystreets

Disconnectable Doodads disconnectabledoodads

Strongly Connected Components

So far, we've only used the DES on undirected graphs. For directed graphs, it can be used
to find a similar kind of decomposition into components.

266

https://heap.link/problem/caveexploration
https://heap.link/problem/elk
https://heap.link/problem/directingstreets
https://heap.link/problem/onewaystreets
https://heap.link/problem/disconnectabledoodads

14.3. THE DEPTH-FIRST SEARCH

Definition 14.2 — Strong Connectivity

A directed graph is strongly connected if there is a directed path from every vertex to
every other vertex. The maximal vertex subsets that are strongly connected are the
graph’s strongly connected components (abbreviated SCCs).

A strongly connected graph is exactly the type that we created by orienting the edges of an
undirected graph in Directing Streets. There are some differences and similarities between
strongly connected components and biconnected components.

Exercise 14.33. Prove that

1. all vertices on a cycle belong to the same strongly connected component.

2. the strongly connected components form a partition of all the vertices.

Exercise 14.34. Consider the undirected graph taken by replacing all directed edges of a
strongly connected graph with a single, undirected edge with the same endpoints as the
directed graph. Show that the graph may contain cutvertices, but not bridges.

Exercise 14.35. Prove that a graph and its transpose graph — the same graph where each
edge is reversed — have the same strongly conencted components.

Strongly connected components are almost always used only for a single purpose:
collapsing a graph into a DAG that, in a sense, preserves the pairwise connectivity in the
graph.

Definition 14.3 — Condensation

Given a directed graph G, it’s condensation C is a directed graph with G’s strongly
connected components as vertices, and directed edges from one SCC to another if there
is a directed edge in G from a vertex in the first SCC to the other.

The condensation of a graph must be acyclic. If a cycle passed through different SCCs they
would all be a single SCC by Exercise 14.33.

Strongly Connected Components - scc
Given a directed graph with V' <100 000 vertices and E < 300 000 edges, find its strongly connected
components.

Solution. Finding SCCs is only slightly more complicated than the DFS for biconnected
component, but we'll try to deduce what extra bookkeeping is required from first principles.
Conceptually, we base the algorithm around the condensation graph. Assume that we
start a DFS within some arbitrary SCC of the graph. If we could determine when the DFS
backtracks along one of the edges of the condensation graph, i.e. from one SCC back to
another, we could find the SCCs using the biconnected component method. During the

267

https://heap.link/problem/scc

N

10:

11:

12:

¥ @Y 2w ke

CHAPTER 14. GRAPH ALGORITHMS

DEFS we put a newly visited vertex a stack, and whenever we backtrack along one of those
edges, we create a new component with all vertices visited after first traversing that edge.

To see why this is correct, we need the condensation graph. The first time the DFS
backtracks along one of the edges in the condensation graph, it will be after visiting an
SCC without any outgoing edges. At that point, the DFS have visited all vertices in the
SCC, pushing all those vertices to the stack since all vertices in the SCC are reachable from
every other vertex. Thus when backtracking along the edge, a new component will be
created containing all those vertices. After this, the state of the DFS is as if those vertices
never existed, so we can repeat the argument once more for the next time we backtrack,
and so on.

To determine whether an edge, we do the same thing as for the biconnected case,
keeping track of the minimum depth we can reach from backedges in a subtree, with the
caveat that we must ignore edges to vertices that we've already placed in a component.
Finally, to simplify the implementation, we perform this check at the end of the DFS
function rather than when looping over neighbors. This lets us pretend that we backtrack
from the first vertex visited as well so that the first SCC visited is correctly detected.

: D« new int[]
: procedure SccDFS(v, d)

push v to the stack

Dlv]«<d

mind < d

for each edge v — u do

if u hasn’t been placed in a component yet then
if u is unvisited then
mind < min(mind, SCC(u,d +1))

mind < min(mind, D[u])

if mind = d then

pop all vertices up to and including v from the stack as a new SCC
return mind

: procedure SCC(vertices V)
14:
15:
16:

for each edge vertex v in V do
if v hasn’'t been placed in a component yet then
SccDFS(v, 0) O

Problem 14.36.
Dominos dominos

While it’s easy enough to generate the full condensation graph after finding the SCCs,
there will be plenty of problems where you won't need to. In many cases you might even
get away with just some local properties of the SCCs in the graph, for example counting
the in- and out-degrees of each SCC.

268

https://heap.link/problem/dominos

14.3. THE DEPTH-FIRST SEARCH

Semi-Strong Connectivity — semistrongconnectivity
A directed graph is called semi-strongly connected if, for every pair of vertices u and v, there is a
directed path from either u to v or v to u (or both). Given a graph with V <100 000 vertices and
E < 300000, determine whether it’s semi-strongly connected.

Solution. The condensation graph is the right tool here, seeing as how it preserves pairwise
connectivity in a very simple DAG format. Thus, the problem can be reduced to whether
an arbitrary DAG is semi-strongly connected or not, a considerably easier problem. By
studying how adjacent vertices of the the topological ordering of the DAG can be connected
by a direct path, we arrive at the following.

Exercise 14.37. Prove that a DAG is semi-strongly connected if and only if it contains a
Hamiltonian path.

Does this mean that you need to explicitly construct the DAG and find its topological
order, or use DP to find the longest path in it? No, not this time either. The SCC algorithm
conveniently produces the components in reverse topological order, so it’s enough to
check if there is an edge to the previously generated component whenever a new one is
found. O

Problem 14.38.
Proving Equivalences equivalences

2-Satisfiability

One of the most beautiful applications of the DFES is for solving the following problem.
Before seeing the solution, it’s almost hard to imagine that the problem can be solved in
polynomial time at all, much less by a single application of the DFS.

2-Satisfiability - 2sat
Let v1,v2, ..., v, be n <100 000 Boolean variables. You are given m statements, each of the form “at
least one of ‘v; is true/false’ and ‘v; is true/false’ holds”. For example, “at least one of ‘v, is true’ and
‘v is false’ holds”
Find an assignment of true/false values to the variables that simulatenously satisfy all statements,
or determine that no such assignment exists.

Solution. To find a graph formulation we can use to attack the problem, we start with an
elementary logical manipulation: rewriting a conjunctive (“or”) clause as an implication.
For example, the statement “at least one of ‘v, is true’ and ‘v, is false’ holds” is logically
equivalent to the statement “if v, is false, v4 is false”. As for any logical statement, its
contrapositive also holds, i.e. the implication “if v4 is true, v is true”. These implications
look very much like directed edges in a graph where each of the 2n statements “v; is
true/false” are vertices, so suddenly a graph approach doesn’t seem entirely unlikely. Our

269

https://heap.link/problem/semistrongconnectivity
https://heap.link/problem/equivalences
https://heap.link/problem/2sat

CHAPTER 14. GRAPH ALGORITHMS

next step should then be to analyze the structure of the graphs generated by solvable and
non-solvable instances.

For simplicity, we'll denote the vertex “v; is true” by v;, and “v; is false” by —v;. Since
implications are transitive', if a vertex a can reach some vertex b in this graph, then “if
a, then b” must hold. A special case now hints directly at the DFS. If both a can reach
—a and —a can reach g, the instance that generated the graph is non-solvable, since either
assignment of truth value to a leads to a contradiction. Determining whether this is true is
easy - this condition is equivalent to a and —a belonging to the same strongly connected
component in the generated graph.

SCC’s should always trigger a closer look on the DAG generated by collapsing each
SCC into a single vertex, as well as the topological sorting of this DAG. Let the rightmost
vertex of the sorting (i.e. any without outgoing edges) be v;. It may be the case that —v;
implies v;, but the opposite can’t be true, since v; can't reach any edges. So, it would seem
that letting v; be true at least has a higher chance of working out than letting —v; be true!
This intuition is entirely correct.

Since v; being true implies nothing, the only problem that can arise is that —v; is
implied by some variable that must be true. If an implication of the form v; — —v; exists,
then the contrapositive edge v; — —v; also exists, contradicting that v; had no outgoing
edges! Thus, after letting v; be true, we can remove v; and —v; from the topological sort
and repeat the process.

What happens if the rightmost vertex of the DAG doesn’t actually correspond to any
variable v;, but rather an SCC that we have collapsed into a single vertex? This makes little
difference: we can actually pretend that they are actually a single variable by the following
exercise.

Exercise 14.39. Let an SCC C in the graph contain some set of vertex, corresponding to
some variables (possibly negated). Prove that some other SCC C’ in the graph contains
exactly those vertices corresponding to the negations of the variables in C.

Remember that the SCC algorithm also lists SCC’s in topological order, so the above
computations can be done with straightforward changes to the SCC algorithm in linear
time. Just remember to check whether any variable and its negation belonged to the same
Scc! O

Since 2-SAT is such an abstract problem, it’s one of the harder standard algorithms
to reduce problems to. There’s often a lot less hints that a problem is solved by 2-SAT
compared to other graph algorithms.

Tornjevi
Croatian Olympiad in Informatics 2007, Final Exam day 2 — tornejvi

'Meaning that if @ implies b and b implies c, then a implies c.

270

https://heap.link/problem/tornejvi

14.4. MINIMUM SPANNING TREES

OnaR xS (1<R,S <100) grid, some of the squares contain a robber, a castle or a wooden tower
with two cannons. Each tower can be configured so that its two cannons fire in one horizontal (left
or right) and one vertical direction (up or down). Simultaneously, all cannons will fire a cannon
ball. A cannon ball that hits a robber will destroy him and continue to fly in the same direction. If a
cannon ball hits a castle, it stops without damaging the big and strong castle. However, if a cannon
ball hits a tower, the tower would be destroyed.

Find a configuration for all of the towers’ cannons such that all robbers are destroyed, and all
towers remain undamaged, or determine that no such configuration exists.

Solution. To find the 2-SAT reduction, we need one crucial observation. While it might
seem like any given robber may have up to 4 towers that could possibly hit it, there can
never be two towers that can hit it horizontally or vertically. If the robber had a tower both
above and below it that could hit him, neither can fire on the robber since they would hit
the other tower! Thus each robber has at most two options: it can be hit by a ball fired
either horizontally or vertically.

This is a typical clue that 2-SAT might be involved, and that robbers might represent
clauses (“at least one of the horizontal or vertical towers must fire at the robber”). That
would imply that the directions in which each tower fires its cannons would be variables.
Indeed, each tower can be represented by two Boolean variables, one to describe which
horizontal direction it should fire in, and one for the vertical direction. O

Problem 14.4o0.

Illumination illumination
Wedding wedding

14.4 Minimum Spanning Trees

So far we've seen algorithms to generate several kinds of spanning trees in a graph. Dijkstra’s
algorithm constructed a shortest-path tree, while the DFS constructed a normal spanning
tree. The third important type of spanning tree is the one of minimum total edge weight.

Minimum Spanning Tree — minspantree
We say that the weight of a spanning tree is the sum of the weights of its edges. A minimum spanning
tree (MST) is a spanning tree whose weight is minimal. Given a weighted graph, find a minimum
spanning tree.

Solution. There are several famous algorithms for finding a minimum spanning tree.
We derive most popular one, Kruskal’s algorithm, but mention one based on Dijkstra’s
algorithm called Prim’s algorithm briefly afterwards.

The method is similar to how we solved greedy problems like scheduling incrementally
by constructing the solution one part at a time. Assume that we had a magic way of knowing
at least one edge {a, b} that is present in an MST. Since a and b are then connected in that

271

https://heap.link/problem/illumination
https://heap.link/problem/wedding
https://heap.link/problem/minspantree

CHAPTER 14. GRAPH ALGORITHMS

Figure 14.7: A graph with a corresponding minimum spanning tree.

MST, for the remaining edges in the MST it doesn’t matter to which of a and b they are
adjacent as far as connectivity is concerned. The same situation arose in the union-find
example Subway Planning (p. 229). We took advantage of it by contracting the two
vertices, replacing a and b with a new vertex ab adjacent to the same edges as the original
vertices. Figure 14.8 shows the procedure in action.

Figure 14.8: Incrementally constructing a minimum spanning tree by merging. The bold edges are
the ones we somehow figured out must be present in the MST.

We still need a way to find an edge that we can always pick for the MST. In the
scheduling problem, we found an interval that was always optimal by looking at various
extremal cases among all the options. For MST we are trying to minimize the sum of all
edge weights, so the most natural extremal case is the edge with the smallest weight. This

272

N

A A T

14.4. MINIMUM SPANNING TREES

is optimal, and just as with scheduling can prove it using a swapping argument.

Assume that a minimum-weight edge {a, b} with weight w is not part of any minimum
spanning tree, so that all edges in the tree have weights w’ > w. Take any minimum
spanning tree and append this edge. A cycle then forms in the graph, including this
particular edge. Deleting an edge that lies on a cycle never disconnects a graph, so
removing a single edge on the cycle again gives us a spanning tree. Since all the other
edges on the cycle has a weight w’ > w, the sum of weights after removing one of them
is changed by w — w’ > 0, so the new tree is at least as good as the original one. As a
contradiction, the edge {a, b} was actually part of a minimum spanning tree.

As in Subway planning, edge contractions are not performed explicitly, instead opting
for union-find. A neat way of repeatedly finding the minimum-weight edge between two
distinct components is to iterate through all edges by increasing weight and use union-find
to check if its endpoints are already connected or not.

: procedure KRUSKALSALGORITHM(vertices V, edges E)

uf < new union-find

for each edge {a, b} € E sorted by increasing weights do
if not uf.sameSet(a, b) then
add (a, b) to the MST
uf .union(a, b)
The time complexity is dominated by the O(ElogE) = O(Elog V') sorting. O
Problem 14.41.
Island Hopping islandhopping
Jurassic Jigsaw jurassicjigsaw
Driving Range drivingrange

There are many types of harder MST problems. Sometimes they’re after a slight
variation of Kruskal’s algorithm, other times the underlying graph is given only implicitly
and is either too large or a bit tricky to construct. We show one example of each type.

Svemir - svemir
By Goran ZuZi¢. Croatian Open Competition in Informatics 2009/2010, contest #7.
Fourth Great and Bountiful Human Empire is developing a transconduit tunnel network connecting
allits N <100 000 planets, each represented as a point in 3D space. The cost of forming a transconduit
tunnel between planets a and b is:

min{|xa = x|, [ya = yol |20 = 2o}

where —10° < x;, yi, z; < 10° are the coordinates of planet i. The empire needs to build exactly N —1
tunnels in order to fully connect all planets, either by direct links or chains of links. Compute the

273

https://heap.link/problem/islandhopping
https://heap.link/problem/jurassicjigsaw
https://heap.link/problem/drivingrange
https://heap.link/problem/svemir

CHAPTER 14. GRAPH ALGORITHMS

lowest possible cost of successfully completing this project.

Solution. While easily modeled as an MST problem, we can’t construct all the 10'° of
the graph. One possible optimization in cases like this is to prune the graph down to a
manageable number of edges before running Kruskal’s algorithm, normally by proving
that certain edges can never be part of an MST. Consider two planets A and B, with cost w.
If there’s another path P between A to B that costs at most w the direct edge {A, B} never
needs to be included in a minimum spanning tree; it could just be replaced with P which
connects A, B, and possibly more vertices at the same cost. There’s a small exception to
this: in a connected subgraph of zero-weight edges this is true for any pair of vertices, but
at least a spanning tree of edges must be kept.

What does this mean for the edges we need to add for a planet A? Let’s decompose the
3D version of the problem into each individual dimension. For uniformity, we can let two
planets at (x4, ¥4, 2,) and (x4, y5, 25) have three edges of weights |x, — x|, |y, — y»| and
|24 — zp| instead - this can’t reduce the weight of an MST. Now, let’s plot the X-coordinates
of some planets (Figure 14.9).

Figure 14.9

It’s clear that for example the edge { A, E} is unnecessary - it could be replaced by the
edges {A, D}, {D, E}. In general, when no planets have the same coordinates it’s sufficient
to only add edges between the N — 1 pairs of planets at adjacent coordinates. If there’s
k > 1 planets on the same coordinate, k — 1 edges also needs to be added between them
so that they are all connected. However, only a single of those planets need an edge to a
planet at the adjacent x-coordinates since it’s connected to the other planets at the same

coordinates through 0-length paths. O
Problem 14.42.

Communications Satellite communicationssatellite

Grid MST gridmst

Inventing Test Data - inventing
By Peter Kosinar. Internet Problem Solving Contest 2008. CC BY-SA. Shortened.
We are preparing a task for IPSC 2009: "Given a weighted undirected complete graph, find its
minimum spanning tree." The only thing left is the input data, but creating it is not as simple as it
looks. If the graph has more than one minimum spanning tree, we would have to write a complicated
checker program to verify the answers, and we are too lazy to do this. Therefore we want to find an

274

https://heap.link/problem/communicationssatellite
https://heap.link/problem/gridmst
https://heap.link/problem/inventing

14.4. MINIMUM SPANNING TREES

input data that avoids such cases. If all the other edges were much more expensive, the minimum
spanning tree would be obvious. Therefore we want the sum of all the edge weights to be as small as
possible.

Given a weighted tree T of N < 15000 vertices, find the minimum possible sum of all edge
weights in a complete graph G where T is the only spanning tree of G. All weights must be positive
integers.

Solution. Recall the property that allowed us to greedily choose edges for an MST, i.e. that
an edge {a, b} can be part of an MST if and only if its weight does not exceed the heaviest
edge on the path between a and b in the tree. The smallest possible weight we can add for
each edge is then the weight of the heaviest edge on the path between its endpoints, plus
1. The heaviest edges can be found for all paths in the tree with a depth-first search from
each vertex, providing us with an only slightly too slow ®(N?) algorithm.

For a faster solution we use the union-find technique from Prominence (p. 232). Add
the edges of T to an empty graph one at a time in order of ascending weight, keeping track
of the connected components. If two vertices a and b becomes connected after adding an
edge of weight w, that means that the heaviest weight on their path in T has weight w. By
keeping count of the size of each component, it’s easy to compute the number of pairs that
become connected after each edge is added. This takes ® (N log N)) time in the worst case,
dominated by sorting. O

Problem 14.43.
Landline Telephone Network Landline Telephone Network

ADDITIONAL EXERCISES

Problem 14.44.

Get Shorty getshorty
Invasion invasion
Arctic Network arcticnetwork
Flowery Trails flowerytrails
Eco-Driving ecodriving
Texas Summers texassummers
George george

Delivery Delays deliverydelays
Sirni sirni

A Feast For Cats cats

Senior Postmen seniorpostmen
Backpack Buddies backpackbuddies
Game game

Muddy Hike muddyhike
Haunted Graveyard hauntedgraveyard

275

https://heap.link/problem/Landline Telephone Network
https://heap.link/problem/getshorty
https://heap.link/problem/invasion
https://heap.link/problem/arcticnetwork
https://heap.link/problem/flowerytrails
https://heap.link/problem/ecodriving
https://heap.link/problem/texassummers
https://heap.link/problem/george
https://heap.link/problem/deliverydelays
https://heap.link/problem/sirni
https://heap.link/problem/cats
https://heap.link/problem/seniorpostmen
https://heap.link/problem/backpackbuddies
https://heap.link/problem/game
https://heap.link/problem/muddyhike
https://heap.link/problem/hauntedgraveyard

CHAPTER 14. GRAPH ALGORITHMS

Arbitrage? arbitrage

Slow Leak slowleak
Self-Assembly assembly

Grand Opening grandopening
Firetrucks Are Red firetrucksarered
Policija policija

Duplex Connections duplexconnections
Cantina of Babel cantinaofbabel
British Menu britishmenu
Beaming with Joy beamingwithjoy

CHAPTER NOTES

Almost everything about shortest paths that are relevant for algorithmic problem solving
was published in a very active period around the 1960s. The Bellman-Ford algorithm was
first published by Shimbel [44] in 1955. Ford’s paper was not published until 1956, but
made no mention of the Bellman-Ford algorithm as we know it today. Instead, he only
noted that shortest paths can be computed by repeatedly finding an edge e = (1, v) and
substituting d(u) < min(d(u),d(v) + w(e)) until all the d(u) converge. He ignores
the matter of how fast — or even if - it converges, which Johnson [25] points out can
take exponential time by proving that Dijkstra’s algorithm (also based on this type of
substitution), while correct in the presence of negative-weight edges, can take exponential
time®. In 1958 Bellman [5] published almost verbatim the slightly longer version of the
Bellman-Ford algorithm that we presented.

Dijkstra [14] published the quadratic version of his famous algorithm in 1959, although
it had been conceived of a few years earlier. Interestingly none of the papers at the time
considered negative edge weights, which is why Dijkstra simply states that his algorithm
is preferable to Bellman-Ford. It was easy for Dijkstra to miss that his algorithm is easily
optimized to O(Elog V') with heaps, considering that heaps weren't discovered until 1964.
A different Johnson [26] put the pieces together in 1972, to give us the modern version of
Dijkstra’s algorithm.

Floyd-Warshall has a shorter history. In 1959 Roy [42] published a special case of
Floyd-Warshall that determined pairwise reachability in a graph (its “transitive closure”).
Warshall [56] was late to the game, waiting until 1962 to publish the same algorithm. Floyd
[18] finally referenced Warshall’s paper when he extended it to compute pairwise shortest
path that same year.

For the component applications of the DFS, Robert Tarjan [52] is the authority. It's no
surprise that he was one of the authors first describing the SCC-based 2-SAT algorithm

*His paper was in turn written as a counterexample to Edmonds’ and Karp’s [15] claim that Dijkstra’s
algorithm only takes O(VElog V') with negative edge weights.

276

https://heap.link/problem/arbitrage
https://heap.link/problem/slowleak
https://heap.link/problem/assembly
https://heap.link/problem/grandopening
https://heap.link/problem/firetrucksarered
https://heap.link/problem/policija
https://heap.link/problem/duplexconnections
https://heap.link/problem/cantinaofbabel
https://heap.link/problem/britishmenu
https://heap.link/problem/beamingwithjoy

14.4. MINIMUM SPANNING TREES

[3] either, though more complicated linear-time algorithms already existed.

277

CHAPTER 14. GRAPH ALGORITHMS

278

CHAPTER 15

Maximum Flows

This chapter studies so called flow networks, and algorithms we use to solve the so-called
maximum flow and minimum cut problems on such networks. Flow problems are common
algorithmic problems, particularly in ICPC competitions (while they are out-of-scope for
IOI contests). They are often hidden behind statements which seem unrelated to graphs
and flows, especially the minimum cut problem.

Finally, we will end with a specialization of maximum flow on the case of bipartite
graphs (called bipartite matching).

15.1 Flow Networks

Informally, a flow network is a directed graph that models any kind of network where
paths have a fixed capacity, or throughput. For example, in a road network, each road
might have a limited throughput, proportional to the number of lanes on the road. A
computer network may have different speeds along different connections due to e.g. the
type of material. These natural models are often use when describing a problem that is
related to flows. A more formal definition is the following.

Definition 15.1 — Flow Network

A flow network is a special kind of directed graph (V, E, ¢), where each edge e is given
a non-negative capacity c(e). Two vertices are designated the source and the sink,
which we will often abbreviate to S and T.

In Figure 15.1, you can see an example of a flow network.

In such a network, we can assign another value to each edge, that models the current
throughput (which generally does not need to match the capacity). These values are what
we call flows.

Definition 15.2 — Flow
A flow is a function f : E — Ry, associated with a particular flow network (V, E, ¢).
We call a flow f admissible if:

o 0< f(e) <c(e) - the flow does not exceed the capacity
o Foreveryv e V{S, T}, ¥ cinv) f(€) = Zecour(v) — flow is conserved for each

279

CHAPTER 15. MAXIMUM FLows

Figure 15.1: An example flow network.

vertex, possibly except the source and sink.

The size of a flow is defined to be the value

> f- X f)

veout(S) vein(S)

In a computer network, the flows could e.g. represent the current rate of transfer
through each connection.

Exercise 15.1. Prove that the size of a given flow also equals

> f- X f)

vein(T) veout(T)

i.e. the excess flow out from S must be equal to the excess flow in to T.

In Figure 15.2, flows have been added to the network from Figure 15.1.

Figure 15.2: An example flow network, where each edge has an assigned flow. The size of the flow is
8.

Given such a flow, we are generally interested in determining the flow of the largest
size. This is what we call the maximum flow problem. The problem is not only interesting

280

15.2. EDMONDS-KARP

on its own. Many problems which we study might initially seem unrelated to maximum
flow, but will turn out to be reducible to finding a maximum flow.

Maximum Flow
Given a flow network (V,E, ¢, S, T), find the maximum flow from S to T and how much flow
should be assigned to each edge in one possible flow.

Exercise 15.2. The flow of the network in Figure 15.2 is not maximal - there is a flow of
size 9. Find such a flow.

Before we study problems and applications of maximum flow, we will first discuss
algorithms to solve the problem. We can actually solve the problem greedily, using a rather
difficult insight, that is hard to prove but essentially gives us the algorithm we will use. It
is probably one of the more complex standard algorithms that is in common use.

15.2 Edmonds-Karp

There are plenty of algorithms which solve the maximum flow problem. Most of these
are too complicated to be implemented to be practical. We are going to study two very
similar classical algorithms that computes a maximum flow. We will start with proving
the correctness of the Ford-Fulkerson algorithm. Afterwards, a modification known as
Edmonds-Karp will be analyzed (and found to have a better worst-case complexity).

Augmenting Paths

For each edge, we define a residual flow r(e) on the edge, to be c(e) — f(e). The residual
flow represents the additional amount of flow we may push along an edge.

In Ford-Fulkerson, we associate every edge e with an additional back edge b(e) which
points in the reverse order. Each back edge is originally given a flow and capacity 0. If e has
a certain flow f, we assign the flow of the back-edge b(e) to be —f (i.e. f(b(e)) = —f(e).
Since the back-edge b(e) of e has capacity 0, their residual capacityis r(b(e)) = c(b(e)) -
F(B(e)) =0 (=f(e)) = f(e).

Intuitively, the residual flow represents the amount of flow we can add to a certain
edge. Having a back-edge thus represents “undoing” flows we have added to a normal
edge, since increasing the flow along a back-edge will decrease the flow of its associated
edge.

The basis of the Ford-Fulkerson family of algorithms is the augmenting path. An
augmenting path is a path from S to T in the network consisting of edges ej, €3, ..., €/,
such that r(e;) > 0, i.e. every edge along the path has a residual flow. Letting m be the
minimum residual flow among all edges on the path, we can increase the flow of every
such edge with m.

In Figure 15.3, the path S, ¢, d, b, T is an augmenting path, with minimum residual
flow 1. This means we can increase the flow by 1 in the network, by:

281

CHAPTER 15. MAXIMUM FLows

Figure 15.3: The residual flows from the network in Figure 15.2.

Increasing the flow from S to ¢ by 1
o Increasing the flow from ¢ to d by 1

Decreasing the flow from b to d by 1 (since (d, b) is a back-edge, augmenting the
flow along this edge represents removing flow from the original edge)

« Increasing the flow form d to T
The algorithm for augmenting a flow using an augmenting path is simple:

1: procedure AUGMENT(path P)
inc < oo
for e € P do
inc < min(inc, c(e) - f(e))
for e € P do
f(e) < f(e) +inc
f(b(e)) < f(b(e)) —inc

return inc

N

@

P N 2w

Performing this kind of augmentation on an admissible flow will keep the flow ad-
missible. A path must have either zero or two edges adjacent to any vertex (aside from
the source and sink). One of these will be an incoming edge, and one an outgoing edge.
Increasing the flow of these edges by the same amount conserves the equality of flows
between in-edges and out-edges, meaning the flow is still admissible.

This means that a flow can be maximum only if it contains no augmenting paths.
It turns out this is also a necessary condition, i.e. a flow is maximum if it contains no
augmenting path. Thus, we can solve the maximum flow problem by repeatedly finding
augmenting paths, until no more exists.

Finding Augmenting Paths
The most basic algorithms based on augmenting paths is the Ford-Fulkerson algorithm. It
uses a simple DFS to find the augmenting paths:

282

1

2:

10:
1
12:
13:
14:
15:
16:
17:

3
4
5
6:
7
8
9

15.3. APPLICATIONS OF FLOws

: procedure AUGMENTINGPATH(flow network (V, E, ¢, f, S, T))
bool[] seen < new bool[|V|]
Stack stack < new Stack
found <« DFS(S, T, f, c,seen, stack)
if found then

return stack
return Nil
: procedure Drs(vertex at, sink T, flow f, capacity c, path p)
p-push(at)
if at = T then

return frue
for every out-edge e = (at,v) from at do

if f(e) < c(e) then

if DFS(v, T, f,c, p) then
return true

p-pop()

return false

For integer flows, where the maximum flow has size m Ford-Fulkerson may require
up to O(Em) time. In the worst case, a DFS takes @ (E) time to find a path from Sto T,
and one augmenting path may contribute only a single unit of flow. For non-integral flows,
there are instances where Ford-Fulkerson may not even terminate (nor converge to the
maximum flow).

An improvement to this approach is simply to use a BFS instead. This is what is called
the Edmonds-Karp algorithm. The BFS looks similar to the Ford-Fulkerson DFS, and is
modified in the same way (i.e. only traversing those edges where the flow f(e) is smaller
than the capacity c(e). The resulting complexity is instead O(V E*) (which is tight in the
worst case).

15.3 Applications of Flows

We will now study a number of problems which are reducible to finding a maximum flow
in a network. Some of these problems are themselves considered to be standard problems.

Maximum-Flow with Vertex Capacities
In a flow network, each vertex v additionally have a limit C, on the amount of flow that can go
through it, i.e.

> fle)<Cy

ecin(v)

Find the maximum flow subject to this additional constraint.

This is nearly the standard maximum flow problem, with the addition of vertex capaci-
ties. We are still going to use the normal algorithms for maximum flow. Instead, we will

283

CHAPTER 15. MAXIMUM FLows

make some minor modifications to the network. The additional constraint given is similar
to the constraint placed on an edge. An edge has a certain amount of flow passing through
it, implying that the same amount must enter and exit the edge. For this reason, it seems
like a reasonable approach to reduce the vertex capacity constraint to an ordinary edge
capacity, by forcing all the flow that passes through a vertex v with capacity C, through a
particular edge.

If we partition all the edges adjacent to v into incoming and outgoing edges, it becomes
clear how to do this. We can split up v into two vertices v;,, and v,,,;, where all the incoming
edges to v are now incoming edges to v;, and the outgoing edges instead become outgoing
edges from v,,,. If we then add an edge of infinite capacity from v;, to v,,;, we claim
that the maximum flow of the network does not change. All the flow that passes through
this vertex must now pass through this edge between v;, and v,,;. This construction thus
accomplish our goal of forcing the vertex flow through a particular edge. We can now
enforce the vertex capacity by changing the capacity of this edge to C,.

Maximum Bipartite Matching
Given a bipartite graph, a bipartite matching is a subset of edges in the graph, such that no two
edges share an endpoint. Determine the matching containing the maximum number of edges.

The maximum bipartite matching problem is probably the most common reduction to
maximum flow in use. Some standard problems additionally reduce to bipartite matching,
making maximum flow even more important. Although there are others ways of solving
maximum bipartite matching than a reduction to flow, this is what how we are going to
solve it.

How can we find such a reduction? In general, we try to find some kind of graph
structure in the problem, and model what it “means” for an edge to have flow pushed
through it. In the bipartite matching problem, we are already given a graph. We also have
a target we wish to maximize - the size of the matching — and an action that is already
associated with edges - including it in the matching. It does not seem unreasonable that
this is how we wish to model the flow, i.e. that we want to construct a network based on
this graph where pushing flow along one of the edges means that we include the edge in
the matching. No two selected edges may share an endpoint, which brings only a minor
complication. After all, this condition is equivalent to each of the vertices in the graph
having a vertex capacity of 1. We already know how to enforce vertex capacities from the
previous problem, where we split each such vertex into two, one for in-edges and one
for out-edges. Then, we added an edge between them with the required capacity. After
performing this modification on the given graph, we are still missing one important part
of a flow network. The network does not yet have a source and sink. Since we want flow to
go along the edges, from one of the parts to another part of the graph, we should place
the source at one side of the graph and the sink at the other, connecting the source to all
vertices on one side and all the vertices on the other side to the sink.

284

15.3. APPLICATIONS OF FLOws

Minimum Path Cover
In a directed, acyclic graph, find a minimum set of vertex-disjoint paths that includes every vertex.

This is a difficult problem to derive a flow reduction to. It is reduced to bipartite
matching in a rather unnatural way. First of all, a common technique must be used to get
introduce a bipartite structure into the graph. For each vertex, we split it into two vertices,
one in-vertex and one out-vertex. Note that this graph still have the same minimum path
covers as the original graph.

Now, consider any path cover of this new graph, where we ignore the added edges. Each
vertex is then adjacent to at most a single edge, since paths are vertex-disjoint. Additionally,
the number of paths are equal to the number of in-edges that does not lie on any path
in the cover (since these vertices are the origins of the paths). Thus, we wish to select a
maximum subset of the original edges. Since the subgraph containing only these edges is
now bipartite, the problem reduces to bipartite matching.

Exercise 15.3. The minimum path cover reduction can be modified slightly to find a
minimum cycle cover in a directed graph instead. Construct such a reduction.

Fly Again

By Par Soderhjelm. Swedish Olympiad in Informatics 2012, Online Qualifiers.

ADDITIONAL EXERCISES

NoOTES

The Edmonds-Karp algorithm was originally published in 1970 by Yefim Dinitz The paper
by Edmonds and Karp

285

CHAPTER 15. MAXIMUM FLows

286

CHAPTER 16

Game Theory

In ordinary life, most of us are familiar with the concept of a game. We play video games,
sports, card games, board games and many other kinds of games. Algorithmists primarily
focus on non-real time games with well-defined rules, where determining who won is
simple. Games such as chess, poker, tic-tac-toe or Yahtzee belong to this category, unlike
soccer (running humans and the behavior of rolling balls are not sufficiently well-defined)
or most video games where reaction speed counts. The mathematical area analyzing such
games is called game theory'. In algorithmic problem solving we further narrow the field
of study into a small subset of this category: the so-called combinatorial games. Most
problems ask us to determine when winning strategies of games exist against opponents
playing perfectly.

16.1 Combinatorial Games

Combinatorial games are a category of mathematical games with some important prop-
erties that make them appropriate for algorithmic problems. First, players alternate in
taking turns to perform what we call a move. This is in contrast to games where players
simultaneously pick what action to play in the game, as in rock-paper-scissor. We call
the state of the game between these turns the positions of the game. Secondly, the game
has so-called perfect information. This means that both players are at all times aware of
everything that could influence the future of the game. Most card games are disqualified by
this criterion as players tend to have hidden cards unknown to their opponent. Finally, we
ignore games which have any kind of random elements. Some examples of combinatorial
games are:

« tic-tac-toe,

o chess,

« connect four,

o A and B take turns marking a square in an infinite grid with their respective letters;

a player wins by making a 2 x 2 square of their letter.

The standard algorithmic problem is to determine if a player can force a win from
some starting position in a game where both sides play perfectly, i.e. always choosing the
best moves. Positions in the game are classified as won (there is a forced win), lost (the

'This also includes many economical constructs not widely thought of as games, e.g. auctions.

287

CHAPTER 16. GAME THEORY

opponent has a forced win no matter how we play), or drawn (no player has a forced win).
If optimal play from a starting position causes a game to go on forever, we classify it as
drawn®. For example, the initial position of tic-tac-toe is drawn as neither player can win
if the opponent plays perfectly. For the four example games above:

o tic-tac-toe is drawn,

o chess is not known to be winning, losing or drawn,

o connect four is known to be a forced win for the first player,

o the square game has no forced win for either player, so it continues forever, which

we consider a draw.

Positions where no move is possible are called terminal positions. Depending on the
game, different terminal positions may be considered won, lost or drawn. However, in most
games all terminal positions have the same outcome (either won or lost). This does not
restrict the types of games available through the following simplifications. Won terminal
positions can be made non-terminal by adding a move to a losing terminal position.
Similarly, since we consider infinite games to be drawn, a drawn terminal position can
be made non-terminal by adding a move to itself, forcing an infinite game. Games are
typically distinguished on whether they are are guaranteed to end, called a finite game?
or not, and whether terminal positions are lost (the most common type, called normal
games) or won (called misére games).

Sometimes we must play the game optimally as an interactive problem, providing
actual winning moves. The difference between finding the winner and playing the game is
usually small. For games where we mathematically prove what positions are winning, the
proof often constitutes an optimal strategy. When games require more computation to
solve, a winning strategy can routinely be constructed with backtracking. Therefore, you
can generally focus only on determining the winner of a game, rather than figuring out
the winning strategy.

Problem 16.1.
Interactive Tic-Tac-Toe interactivetictactoe

16.2 Mathematical Techniques

In this section, we study some techniques that are typically used to solve games in mathe-
matical problem solving. They are highly useful in many algorithmic problems as well.

The theory of games have a principal theorem that tells us two things: the problem we
are trying to solve is well-defined, and there is a simple algorithm to do so.

*>This can happen when making a move to break the loop would cause either player to lose, not an uncommon
occurrence in chess.
3Note that a finite game may still possess an infinite number of positions!

288

https://heap.link/problem/interactivetictactoe

16.2. MATHEMATICAL TECHNIQUES

Theorem 16.1 — Zermelo’s Theorem
All positions in a finite game are either winning or losing.

Proof. We prove this by induction on the length L(P) of the longest path from a
position P to a terminal position. The claim is obvious for all terminal positions (i.e.
with L(P) = 0). Now, assume that this is true for all positions P with L(P) < I for some
1. Consider any position P that has L(P) = . This position can only reach positions P’
with L(P") < I by definition of L(P"). By the induction hypothesis, all those positions
are either winning or losing. If one of them, P’, is losing, P has the forced win P - P'.
Otherwise, all moves P — P’ leads to a position that is winning for the opponent, so P
must be losing. Thus P wins or loses too, completing the induction. O

By sorting positions such that if there is a move P — P’, P’ comes before P, we can
use the inductive step of the theorem to solve the game. Specifically, we iterate through all
positions in this order and mark each of them as winning if and only if it can move to a
losing position. We shall call this method the induction algorithm.

Periodicity
The first step in solving most games is to use the induction algorithm to solve small cases

and look for patterns. One of the more common patterns is periodicity, which we can
often prove holds in the general case using induction.

Alex and Barb - alexandbarb
By Dante Bencivenga. Calgary Collegiate Prog. Contest 2020. CC BY-SA 3.0. Shortened.
Alex and Barb are playing a card game. There is a stack of 1 < k < 10° cards. They take turns
removing from m to n (1< m < n < 10°) cards from the stack, beginning with Alex. The first player
with no valid moves left loses. Determine which player wins the game provided that both play with
an optimal strategy.

Solution. The solution method when using induction is highly formulaic. First, we must
determine the terminal positions. Since at least m cards must be removed in a move, they
are those with 0 to m — 1 cards. The game is in normal form, so the terminal positions are
all losing.

Next, we identify winning positions that have a valid move to one of these losing termi-
nal positions. A position x can be reached from the positions [m + x, n + x . Extrapolating
this to an interval of targets [, y] tells us that the positions with moves into this interval
are [m + x, n + y]. This means that the positions that can reach any of the terminal losing
positions [0, m — 1] are the n positions [m, m + n —1].

The other aspect of determining positions is identifying losing non-terminal positions.
They are the ones that can only reach winning positions. For example, we see that m + n
must be a losing position; it can only reach positions [m, 1], all of which are losing. In

289

https://heap.link/problem/alexandbarb

CHAPTER 16. GAME THEORY

fact, all positions in the interval [m + n,2m + n — 1] can reach only the losing positions
[m, m + n —1]. Notice that this new interval of losing positions [m + n,2m + n — 1] has
length m, as did the interval [0, m — 1] of losing positions. All the following # positions,
[2m + n,2m + 2n — 1] are winning too by the same argument as for [m, m + n —1].

A pattern has emerged. The first m positions lost, the next n won, the next m lost, and
the next n won. That it holds in general is easily proven by induction. Assume that it holds
for all positions up to a(m +n) —1 cards, so that the positions [am + (a—1)n, a(m+n) -1]
win. The next m positions [a(m + n), (a + 1)m + an — 1] can only reach those winning
positions, so they lose. The following n positions [(a + 1)m + an, (a +1)(n + m) —1] can
all reach one of those losing positions, meaning they win. Therefore, the pattern holds up
to (a+1)(m+n)—1as well.

Since the outcome of the came has period n+m, Alex loses if and only if k mod (#n + m)
isin [0, m —1]. O

Problem 16.2.
Ninety-Nine ninetynine

Invariants

A typical solution method is that of finding a winning invariant. Imagine that we could
find a property X of the positions in a finite, normal game, such that a position that is X
can always move into a non-X position, while positions that are not X can only move into
X positions. Then, the winning positions are exactly those with the property X. The idea
is that if a player has an X position, they can force the opponent into a non-X position,
who is forced to give the first player an X position back. Since the first player can keep the
property X invariant for their own position, and an X position have at least one move by
definition, an X position can not be losing (and so, by Zermelo’s theorem, must win).

Note that this is just a reformulation of what it means to be a winning or losing position.
It is mostly a method of thinking that is useful when you are familiar with it, and it can
help shorten some proofs. As with most invariance solutions in algorithmic problems, the
hardest part is finding the actual invariant.

The Board Game - bradspelet
By Erik Odenman. Swedish 10l Selection 2014.

Ann-Charlotte and Berit are playing a new board game. The game is played using an #n x m rectangular
wooden board and a chain saw. The two players alternate taking turns, where each turn is divided
into two phases. The player to move starts with sawing the board into two new rectangular pieces
with integer dimensions. In the second phase, the opponent chooses one of the pieces and throws
it away. The game continues with the remaining piece. A player can not make a move if it is their
turn to saw the board and it has dimensions 1 x 1. When this happens, that player loses the game.
Determine if the first player wins or loses.

290

https://heap.link/problem/ninetynine
https://heap.link/problem/bradspelet

16.2. MATHEMATICAL TECHNIQUES

1 2 3 4 5 6 7 8 9 10 11 12
1 L W | L W | L W | L W | L W | L w
2 W | L W | W|W]|L W | W | W]|L W | W
3 L W | L W | L W | L W | L W | L w
4 W | W|W]|L Wi W IW | W | W | W | W] L
5 L W | L W | L W | L W | L W | L w
6 W | L W | W|W|L W | W | W|L W | W
7 L W | L W | L W | L W | L W | L w
8 W W W | W W | W | W|L W W | W | W
9 L W | L W | L W | L W | L W | L w
10 | W |L W | W|W|L W | W|W]|L W | W
1 L W | L W | L W | L W | L W | L w
2 | W | W|W|L Wi W W | W | W | W | W L

Table 16.1: Winning and losing positions for all 1< n,m < 12.

Solution. We first solve some small instances with n = 1 by hand using the induction
algorithm to see if some pattern emerges. Solving e.g. the first 10 values of m suggests
that odd m are losing positions and even m are winning positions. Can we prove this
by finding a strategy where a player can keep the evenness of their position invariant?
If Ann-Charlotte has a1 x 2k board, she can split the board into widths 1 and 2k — 1 no
matter what k is. Berit must pick the 1 x (2k — 1) board (odd width!) and split it into one
board of even width and one of odd width. Ann-Charlotte can then keep the board of
even width. As Ann-Charlotte could keep evenness invariant and always has a possible
move, the evenness is a winning invariant.

Finding the correct invariant for general # is harder and requires either mathematical
ingenuity or solving a lot of small cases and pattern matching. Since we are programmers,
filling in a table of all winning positions for #n, m < 12 using the induction algorithm is the
simpler option (Table 16.1). One thing should stand out: the rows for 1, 3, 5, 7, 9, 11 are
the same, as are the rows for 2, 6, and 10 and those of 4 and 12. Only # = 8 is not identical
to another row. What unites the numbers with identical rows? If we look at the smallest
number in each, we notice that they are the powers of two 1, 2, 4, 8. This is a strong hint,
and drawing some inspiration from number theory, we might notice that the numbers
in each group are those exactly divisible by the same power of two*: 2°, 2!, 2%, and 2°
respectively. The next step should then be to compress the table and only focus on a single
of these unique categories of answers.

After studying Table 16.2, the hypothesis presents itself: a position is losing when
n and m are exactly divisible by the same power of two. The winning player can easily
keep this invariant. Assume that for some winning position, 2% || # and 2' || m, with
k < 1. To restore the invariant, the winning player can make the vertical split (2, m — 2¥).

4An integer n is exactly divisible by 2% when 2* | n but 25*! | 1, as we learn in Chapter 17 on number theory.
We use the notation 2¥ || # for this.

291

CHAPTER 16. GAME THEORY

1 2 4 8
1 L W | W | W
2 | W | L W | W
4 | W | W | L w
8§ | W | W | W |L

Table 16.2: Winning and losing positions only for powers of 2.

Both options that the losing player can choose are now exactly divisible by 2. In a losing
position with k = I, every split along one dimension, e.g. 7 into (a, n— a) results in at least
one piece not exactly divisible by 2¥. Assume to the contrary that they both are. Factoring
out 2¥ from the numbers we get that a = x2¥ and n — a = y2*, for some odd x and y.
Then n = (y + x)2% where y + x is even, so 2K*! | n, contradicting our assumption that
2K n. O

Competitive Tip

The popular C++ compilers support many convenient builtin functions for competitive program-
ming. For example, the function __builtin_ctz(x) counts the number of trailing zeroes of an
int x when written in binary. This is equal to the exponent of the power of two that exactly
divides x (unless x = 0, for which the result is undefined), giving us a one-liner for the previous
problem.

Problem 16.3.
Breaking Branches breakingbranches

Symmetry

When children first starts to play chess, an early attempted strategy is playing symmetrically.
If white moves the pawn on the e file two squares forward, the symmetric opponent moves
black’ e file pawn two squares forward, and so on. Of course, such a strategy is eventually
doomed to fail in chess. White can at some point make a move to which black has no
symmetric response, such as a capture of the symmetrically placed piece or a check. In
many mathematically inspired chess problems, this strategy works better.

Knight Packing - knightpacking
On an n x n chess board, two players alternate placing a knight on the board. A knight can only
be placed on a square if there is no other knight placed either 1 row and 2 columns or 2 rows and 1
column away from it on the board. The first player who cannot place a knight on the board loses.
Given n < 10°, determine if the first or second player to move wins.

Solution. In all problems of this kind, where one is supposed to make a move by e.g.
choosing a square to place something at, the first question should be: if my opponent
makes the first move, is there some symmetric move I can always make? For grids, this

292

https://heap.link/problem/breakingbranches
https://heap.link/problem/knightpacking

16.2. MATHEMATICAL TECHNIQUES

symmetry can manifest in several ways, such as mirroring a move along an axis or rotating
it 180° around a center.

In the case where # is even, the second player can always copy the opponent’s move be
reflecting it vertically along the middle of the board (see Figure 16.1). By always playing

2 al |a
.
&
&
-
_
2 al |a

Figure 16.1: An n = 6 game where the first player just played their fifth move (the black knight), with
the corresponding symmetrical position marked.

vertically symmetrically, the upper and lower halves of the board is identical after each of
the second player’s moves. This means that the moves available on each half of the board
must be the same too. Thus, if a move is possible to make, its symmetrical move is also
possible to make. There is caveat though - it could be the case that the last placed piece of
the first player makes the symmetrical move impossible. Since a square and its vertical
reflection is always on the same column, this can never happen in this problem.

When 7 is odd, this strategy fails. Reflecting any square along the middle row gives us
back that same square, so we can not always play symmetrically. Does the other mirroring
strategy we suggested work, i.e. rotation 180° around the center? It nearly does (prove
this!), except for a single square - the center. In this case, the first player can place a knight
in the center on their first move, and wins by copying the second player’s move for all
following moves. Thus, the first player wins when # is odd, and the second for even n. [

This is typical in symmetry problems. For certain positions, there is a simple symmetry
that the second player can use, while other positions have some kind of non-symmetry
(such as a central square) which the first player removes during their first move, simultane-
ously passing the move to their opponent. After the second player moves, the first player
adopts the symmetric strategy and wins. This is often one of the factors that makes the
outcome of games dependent on e.g. the parity of grid dimensions or a sequence length.

Exercise 16.4. On a square table, two players alternate in placing coins of the same size.
Coins may not overlap or extend outside of the edge of the table. The first player who is
unable to place a coin loses. Does the first or second player win?

293

CHAPTER 16. GAME THEORY

Problem 16.5.
Chocolate Division chocolatedivision

Before moving on to the next technique, we show an example where a symmetric
strategy is not as obviously relevant.

The Ice Cream Game - glasspelet
By Fredrik Ekholm and Nils Gustafsson. Swedish Olympiad in Informatics, Online Qualifiers 2020
Kirderf and Slin have a long table containing 1 < N < 10° buckets of ice cream organized in a single
row. Ice cream can have one of M < N flavors. They take turns eating a bucket subject to the
following constraints. First, they may only take either the leftmost or the rightmost of the remaining
buckets. Secondly, they may never eat the last bucket of any ice cream flavor. If a player can’t select a
bucket of ice cream, they lose. Determine who has a winning strategy.

Solution. The game is quite complicated, so a good initial step is finding all the terminal
positions to see if they give us insight. A terminal interval must contain a bucket of
every flavor according to the rules, but also be a minimal such interval. Finding these is
a standard application of the two pointers technique. The same player always have the
turn at a given terminal interval, since this is only determined by the parity of the moves
played, and thus the parity of the interval’s length. If N is even, then even-length terminal
positions means that the second player wins, and vice versa.

The next step in arriving at a solution is to consider what simple strategies are possible
at all - here, symmetry should be one of your first candidates. For games on intervals,
symmetry generally means reflection in the midpoint of the interval. In this case, that
translates to eating ice cream buckets from the end opposite of where your opponent last
ate. The intuition for why this strategy is something that we should investigate here is that
both players can adopt it, and no matter which of them do, the resulting terminal state is
almost the same. If both players can force the game to approximately the same state, odds
are that the strategy benefits one of the players more than the other, and thus it would be
optimal for them to adopt it.

So, which player benefits the most from symmetric play? Since such a strategy would
remove equally many ice creams from both ends of the line, it is the terminal positions
whose endpoints are closest to the center that become relevant. Formally, for each player,
we consider the terminal interval where the endpoint furthest from the center is closest to
the center.

Let us assume that Kirderf’s best interval is k buckets in from the left edge of the
table (and even further away from the right edge), while Slin’s best interval is s buckets
away from the right edge’ (and even more buckets in from the left). If s > k, Slin wins
by playing symmetrically. After playing k + 1 symmetric rounds, there can be no more

5The case where both intervals have their worst endpoint on the same side is uninteresting, as one of the
intervals is then strictly closer to the center and easily winnable for that player.

294

https://heap.link/problem/chocolatedivision
https://heap.link/problem/glasspelet

16.2. MATHEMATICAL TECHNIQUES

winning intervals for Kirderf in the remaining interval, since the one closest to the center
was less than k + 1 buckets from the edges. Thus, the only terminal states left are wins
for Slin. If instead s < k, Kirderf wins. Kirderf eats one bucket from the right on his first
move. His interval is still k steps away from the left endpoint, while Slin’s is s — 1. It is then
Slin’s turn, and since k > s — 1, Kirderf now wins after s — 1 rounds of symmetric play. [

Passing the Move

A neat trick using the fact that any position either wins or loses is that of passing the move.
Assume that there is some position P in the game that either we can move to, or force our
opponent to move to. If P is losing, we can win the game by playing a move that takes the
game to P. If P wins, we can instead try passing the move to our opponent and force them
to take the game to P.

Block Game - blockgame2
By Mees de Vries, BAPC Preliminaries 2016. CC-BY SA 3.0. Shortened.
You have challenged a toddler to the following game. In front of you are two towers of 1 < #, m < 10"
blocks. You and the toddler take turns removing blocks from the larger of the two towers. The
number of blocks removed must be a positive multiple of the number of blocks in the other tower.
The first person to remove the last block from one of the towers wins. If you make the first move,
who wins the game?

Solution. We represent positions in the game as pairs of the number of blocks (#, m) in
the two towers. To simplify analysis slightly, we start by recognizing the similarity between
the problem and the Euclidean algorithm - the operations performed are exactly the same.
This means that #n and m are always multiples of their greatest common divisor d, so we
can without loss of generality divide d away from »n and m without changing the game.

After this simplification, there is now only a single terminal position: (0,1). Let us
solve the cases where the smallest tower has height 1, starting with the position (1,1). It
has a single possible move, going to (0,1). Furthermore, any position (n,1) can reach
both of these two positions. This is the archetypical pass the move opportunity. We have
two positions P = (1,1) and P’ = (0,1). P can only move to P’, and all other positions
P" = (n,1) can move to both of them. By using the pass the move technique, we can
conclude that P” must be winning. If P loses, we move to P, giving our opponent a losing
position. If P wins, we pass the move by moving to P/, forcing our opponent to move to P
instead and giving us the win.

Does this trick work when the smallest tower has size 2 too? Consider the positions
P =(1,2) and P’ = (3,2). P’ can only move to P, and all other moves (5,2), (7,2), ...
can reach both P’ and P. Thus, they are all winning, with the correct strategy depending
on whether P is winning or not.

The reasoning generalizes to all m: for a position (#, m) where m > 2n, we can always
give the position (n, m mod n) to our opponent, or get it ourselves by passing the move

295

https://heap.link/problem/blockgame2

CHAPTER 16. GAME THEORY

(n, mmodn + n) to our opponent.

How do we figure out if a position (#, m) is winning or losing if n < m < 2n? These
positions only have a single possible move, namely to (#, m — 1), so we recursively use
the same algorithm to determine of that position is winning or not instead. We already
know from the Euclidean algorithm that the number of such steps we can be forced to take
before arriving at (0,1) (or m > 2n) is logarithmic in # and m, so this is fast enough. [

16.3 Game Graphs

An abstraction of combinatorial games is that of the game graph. We visualize a game by
letting all positions be vertices in a graph and drawing directed edges v — u if it is valid
to move from position v to position u. Two players (£ and E) then alternate in making
moves, where a move consists of moving a game piece placed at one of the vertices along
an edge in the graph. When a player is unable to make a move, they lose.

Figure 16.2: An example of a game graph with 6 positions. Player & starts and has three possible
moves 4, B and C. & chooses to move to 4, whereupon & responds with the only available move D.
Finally, Z ends the game with the move E, leaving E with no possible moves who therefore loses
the game.

The finite games are exactly those with acyclic game graphs. Earlier, we described
a solution to them - the induction algorithm. We will briefly revisit it in the context of
solving a general game without patterns, followed by a nice optimization trick.

The induction algorithm is essentially dynamic programming. Whether a position P
with moves P; is winning or not is computed recursively by the rule

Wins(P) true if Wins(P;) is false for any move P;
ins(P) =
false otherwise

For simple games, a bottom-up solution can give us very short code.

Bachet's Game - bachetsgame
By Piotr Rudnicki. UofA Programming Contest 2002. CC-BY SA 3.0. Shortened.
Stan and Ollie play a game using 7 < 10° stones on a table. They take turns removing stones from
the table, with Stan moving first. The player to take the last stone wins. The number of stones a

296

https://heap.link/problem/bachetsgame

]

AN

16.3. GAME GRAPHS

player can remove during a single turn must be one of m < 10 given numbers 4y, . .., a, (one of
which is always 1, so there is always a possible move). Determine who wins the game.

Solution. Since the number of stones on the table always decreases after a move, the
recursion can be solved bottom-up in increasing order of stones. The base case is the
terminal position 0 which is losing, since it means the opponent just took the last stone
and won. Then, for each other position x, we consider the available moves x — ay, x — a5,
and so on. If any of them is a losing position, we mark x as won. Otherwise, x is marked
as lost. This takes O(m) time per state, for a total complexity of O(nm), which is fast
enough. O

A possible implementation of the bottom-up induction in the previous problem is very
short:

wins[e] = true;

for (int i = 0; i < N; i++)

for (int ai : moves)

if (ai >= 1)

wins[i] |= wins[i - ail;

Whether bottom-up or top-down is best depends a lot on the problem at hand. For
very complicated game graphs, where a topological ordering of all positions is annoying
to determine, top-down is of course simplest. Typically, the top-down version is coded as

follows.

: procedure ISWINNING(position v)

if v € memo then
return memo[v]

for every move v — u do
if not IsWinning(u) then
return memo[v] = true

return memo[v] = false

Problem 16.6.
A Multiplication Game amultiplicationgame

Another benefit of top-down dynamic programming is that it can automatically prune
some unnecessary, unreachable states from computation, while bottom-up processing
usually explicitly visit every imaginable state in a recursion. In this particular recursion,
we can sometimes prune a lot of states. The trick is the loop on line 4, which short-circuits
once a move to a losing position is found, rather than recursing into all possible moves.

The Bit Game - bitgame
The two siblings Alice and Bob play the following game. First, their mother picks a subset of non-
negative integers less than 2°°. Alice then writes down either 0 or 1 on a piece of paper. Starting with

297

https://heap.link/problem/amultiplicationgame
https://heap.link/problem/bitgame

CHAPTER 16. GAME THEORY

Bob, they now alternate appending either 0 or 1 to the number currently on the paper. Once the
paper has 35 digits on it (meaning Bob writes down the last digit), it is read as a base 2 integer. If
the resulting number is in their mother’s subset, Alice wins. Otherwise, Bob wins. Your task is to
determine who would win with optimal play.

Since the subset their mother picked can be very large, you are not given all the numbers in it.
Instead, you can ask her if different integers are part of the subset.

Solution. The induction algorithm would recursively try all possible moves in the game.
Since no two sequences of moves leads to the same position, memoization would not
help us at all here. We can not even hope for the worst-case deterministic complexity to
improve much on the total number of 2°> terminal positions in the game since the game
is completely arbitrary. Therefore, we must put our hopes to expected time complexities
instead. The key is that the sWinning recursion short-circuits if the first move we try in a
position wins for us. If at least one of the two moves available at a position wins for us, we
sometimes get to skip checking the other one. By randomly choosing what move to try
first, we are guaranteed to choose it with some probability.

This is unfortunately not always possible. For a losing position P, both of the moves
Py and P; lose, so we have to recurse through both of them no matter which we pick
first. However, Py in turn has two moves, say Pj and P;. Since P, is a winning position,
at least one of these two are losing. By randomly picking what moves to check first at
Py, we will find the winning move with probability 0.5 first. This means that we have to
recurse on average 1.5 times. The same applies to P;. The expected branching factor over
two consecutive turns is thus 3, rather than the branching factor of 4 we would get if not
short-circuiting. In total, the expected time complexity is then O(33) = O(1.74") for n
moves which is fine. U

A more careful analysis is possible to get a tighter bound for this randomized algorithm,
which we leave as an exercise.

n
Exercise 16.7. Prove that the worst-case time complexity is 6(%) (about 1.69") in
expectation.

This trick is a result of a more general optimization. As we shall see in Section 16.5,
the induction algorithm is a special case of an algorithm called minimax that can solve
games with real-valued rather than binary outcomes. This algorithm has an optimization
called alpha-beta pruning (see the chapter notes for further references on this). For binary
games, the alpha-beta optimization reduces to the short-circuit behavior of the top-down
induction algorithm.

16.4 Cyclic Games

Games with cycles in their graphs are not necessarily finite. This does not mean that we
cannot determine whether certain positions are forced wins or losses. It is in fact possible

298

16.4. CycrLic GAMES

to do so for every non-drawn position in the game. Using the induction algorithm as-is
unfortunately fails. It depends on finding a topological ordering of the game graph, but
such an ordering does not exist for game graphs containing cycles. The solution can be
found in using graph tools we are already familiar with.

Cop and Robber - copandrobber

By Vytautas Gruslys. Baltic Olympiad in Informatics 2014
A cop and a robber are playing a game in a city, represented as an undirected graph with 2 < N < 500
vertices. The cop starts by choosing a vertex to guard. Knowing where the cop is, the robber picks a
vertex to rob a bank at. They now alternate moving, always aware of where the other player is before
moving. The cop moves by either going to a neighboring vertex, or staying at the current vertex.
The robber on the other hand must always move to a neighboring vertex - staying still is too risky
for a wanted robber! If the two players occupy the same vertex after either player’s move, the cop
wins. Write a program that, given the graph, determines if the cop can win, and if so, plays the role
of the cop in the game.

Solution. Before all else, we check whether the problem reasonably can be solved by using
the game graph approach, or if the graph would be too big and requires smarter insights. A
position in the game can be identified by three things: the position of the cop, the position
of the robber, and which player moves next. This sums up to roughly 500 000 positions in
total. Furthermore, each position has up to 500 possible moves, so the game graph has up
to 250000 000 edges. A solution linear in the number of edges should be fine, although
we must take care not to represent the entire game graph explicitly. Instead, generating
the moves for a given vertex when needed makes sure we do not exceed available memory.
Now, we need to answer two questions. How do we play the game if we know what
positions are winning for the cop, and how do we perform this classification?

When choosing the initial vertex for the cop, we pick any one where the cop has a
winning position no matter what vertex the robber starts at. If there is no such vertex, the
cop can not win the game.

Making optimal moves during the game is trickier. In the finite game case, we could
pick any of the moves that leads to a losing position for our opponent. In the cyclic case,
this may fail. Choosing arbitrary winning moves could cause us to go back and forth
between winning positions forever. For example, consider the case where the city is just
a line of vertices. All positions are winning for the cop in this case (just move towards
the robber). Picking arbitrary winning moves could then lead to the cop always choosing
the “wait” move and thus never catching the robber, despite always having a winning
position. The standard way to solve this is to choose the move that allows the cop to win
in as few moves as possible against a robber playing perfectly (the depth to win, or DTW
metric). With this move the robber can never force us back to a previous position, since
our positions must have strictly decreasing DTW.

Now, how do we actually solve the game graph? Let us step through our induction

299

https://heap.link/problem/copandrobber

N

L ® N 2w k@

10:

11:

12:

14:
15:
16:
17:
18:
19:
20:
21:
22!

23:

CHAPTER 16. GAME THEORY

algorithm and see where it fails. We can still mark any terminal positions, i.e. those where
the cop catches the robber, as winning or losing. For those terminal positions where the
robber has the turn, the position is losing, and where the cop has the turn, the position
is winning. Both of these are possible, since the robber can be forced to move into the
cop’s vertex if that is their only neighboring vertex. Any position adjacent to one of those
losing positions can then be marked as winning, and any positions with only adjacent
winning positions as losing. Since this can result in new positions being determined, we
repeat this process until all remaining positions either have no losing neighbor or at least
one non-winning neighbor. This step is typically implemented as a breadth-first search
similar to topological sorting with all edges in the game graph reversed, like in the following
pseudo code:

: procedure CycLicGaME(list of positions P)

movesLeft < new array of size |P)|
status < new array of size |P|
winningMove < new array of size |P|
q < new queue
for every v € P do
status[v] < undetermined
movesLeft[v] < the number of moves going out from v
if v has no moves then
status[v] < the result of the terminal position v
q.push(v)
while g is not empty do
v < gq.pop()
for every move u — v do > Note that moves go to v here.
if status[u] = undetermined and status[v] = losing then
status[u] < winning
winningMove[u] < v
q.push(u)
else
decrease movesLeft[u] by 1
if movesLeft[u] = 0 then
status[u] < losing
q.push(u)

When it comes to choosing what move to make at a winning position, the algorithm picks
the first losing position that was processed in the queue. This is correct, thanks to the
following claim we leave as an exercise:

Exercise 16.8. Prove that the CyclicGame algorithm processes all states v (both winning
and losing) in increasing order of DTW.

We claim that all positions left undetermined by the algorithm are drawn. This is

300

16.5. MINIMAX

based on two observations: all undetermined positions have an undetermined neighbor,
and the only determined neighbors of an undetermined position are losing. A player
in an undetermined position is faced with exactly two choices: moving into another
undetermined position, or moving into something that is a determined loss. No player
wants to lose, so they instead keep moving between undetermined positions, drawing the
game. O

Problem 16.9.
Grid Volleyball gridvolleyball

16.5 Minimax

In many games, especially those in real life, it’s important not only to win, but to maximize
your score doing so. We can solve them in the general case using a variant of the induction
algorithm called the minimax algorithm which is just as efficient.

Peg Game for Two — peggamefortwo
By Arup Guha. 2018 North America ICPC Qualifier. CC-BY SA 3.0. Shortened.
Jacquez and Alia have a triangular peg game with 15 holes arranged in 5 rows a triangular pattern.

T X
r X r O
r T T r o I
T o r T r Tr T X
r xr T X T r r T T X

Figure 16.3: The initial state of the game, followed by the state after a diagonal jump was made with
the rightmost peg on the second row.

Initially one hole is empty and the remaining 14 are filled with pegs (see Figure 16.3). The player
moves by picking up a peg to “jump” it over an adjacent peg, landing on an empty hole adjacent to
the jumped peg. Jumps must be in straight lines (horizontally or diagonally). The peg that is jumped
over is removed. The players alternate making a jump on the board.

Each peg is assigned a positive point value. The score for a jump is the product of the point
values for the two pegs involved in the jump. The total score of a player is the sum of the scores of
their jumps. The game ends when a player has no possible jumps to make. Each player’s goal is to
maximize their own total score minus their opponent’s total score (at the end of the game).

Write a program that, assuming that Jacquez starts, outputs the value of his score minus Alia’s
score if both players move optimally.

Solution. For a given position P, let us call the best possible difference in Jacquez and
Alia’s scores S(P). What “best” means of course depends on which of the two players are

301

https://heap.link/problem/gridvolleyball
https://heap.link/problem/peggamefortwo

CHAPTER 16. GAME THEORY

to move. Jacquez would prefer larger S(P), while Alia wants to minimize it.

Deriving an algorithm to compute S(P) follows intuition. If we are Jacquez at the
starting position S(P), which of the possible first moves Py, ..., P, do we prefer to make?
Clearly, the one that gives us the best result no matter how Alia can play. Formulating
it differently, we want to pick the move where the sum of the score of the move, which
we can call sg, and the value of S(Py) is the highest. This gives us a recursion for the best
score Jacquez can get at a position,

S(P) = n})ﬁx(S(Pk) + k)

and, symmetrically, a recursion for when it is instead Alia’s turn, who prefers to minimize
this value instead:
S(P) = min(S(Px) - sk)-
k

Note the difference in sign on s; since increasing Alia’s score decreases S(P). These
recursions can be computed using dynamic programming over the less than 2> game
positions. What remains is generating all possible moves as a given position, which is a
small implementation problem. O

The computation of those two recursions is the minimax algorithm in its entirety. The
induction algorithm for binary games can be seen as a special case of minimax where each
terminal state is assigned e.g. oo for first-player wins and —oo for second-player wins, with
the first player maximizing the score and the second player minimizing it.

ADDITIONAL EXERCISES

Problem 16.10.

Cutting Brownies cuttingbrownies
String Game stringgame
Joyless Game joylessgame
Black Out blackout

The Coloring Game fargningsspelet
Game Strategy game

NOTES

Combinatorial games have a rich theory which we barely scraped the surface of in this
chapter. For algorithmic problem solvers, most of it tends to be too complex to be of use.
The Sprague-Grundy theorem [21, 48] from the 1930 is essentially the latest development
in regular problem solving use.

John H. Conway’s contributions to the topic of combinatorial game theory is among
the most well-known. In particular On Numbers and Games [10] and the series Winning

302

https://heap.link/problem/cuttingbrownies
https://heap.link/problem/stringgame
https://heap.link/problem/joylessgame
https://heap.link/problem/blackout
https://heap.link/problem/fargningsspelet
https://heap.link/problem/game

16.5. MINIMAX

Ways for your Mathematical Plays [6] discuss more advanced games that seldom appear in
algorithmic problems.

The game theory we studied is also limited to solving general games only when they
have small game graphs. For larger games, there are many optimization techniques for
faster evaluation that we did not discuss here, such as alpha-beta pruning (although we
mentioned it briefly in the context of binary games), or the relatively recent Monte Carlo
tree search. The latter is famously used in the highly successful AlphaZero program which
drove much of the development in chess and go computer engines when first developed.
For additional reading, consider a book on Al such as Artificial Intelligence: A Modern
Approach [43].

We have not talked about the general, non-combinatorial game theory, much of which
has great economical implications. Von Neumann Theory of Games and Economic Behavior
[55] is considered the seminal work on founding game theory as a distinct mathematical
field. Most textbooks on game theory focuses on these more general games.

303

CHAPTER 16. GAME THEORY

304

CHAPTER 17

Number Theory

Number theory is the study of certain properties of integers. It makes an occasional
appearance within algorithmic problem solving, in the form of its sub-field computational
number theory. It is within number theory topics such as divisibility and prime numbers
belong.

In competitions, number theory problems range from simple applications of the main
theorems you learn in the chapter, to harder tasks where you must combine number
theoretical insights with other algorithmic techniques. The latter can even require solving
difficult mathematical number theory problems in order to at the very least prove correct-
ness of a solution, if not to find it. Most content in this chapter is learning efficient methods
of computing the standard number theoretical objects, such as primes, modular inverses,
divisors, and becoming well acquainted with time complexities and other asymptotic
approximations that tend to arise in number theoretical problems.

A word of caution before you proceed. This chapter is mathematically heavy, and
teaches you number theory from the ground up. You might find some example problems
on the way obvious because of things you have previously learned, but might not have
rigorously proven. Make sure to carefully follow the solutions even to those problems,
because they include some fundamental theorems you might take for granted if you have
not studied number theory.

171 Divisibility
All of the number theory in this chapter relate to a single property of integers, divisibility.

Definition 17.1 — Divisibility

An integer n is divisible by an integer d if there exists an integer g such that n = dq.
We then call d a divisor of n. We use the notation d | n to state that d is a divisor of #,
and d + n when it is not.

Dividing both sides of the equality n = dg with d gives us an almost equivalent definition,
namely that 4 is an integer. The difference is that the first definition admit the divisibility
of o by o, while the second one does not (zero division is undefined). When we speak of
the divisors of a number in most contexts (as in Example 17.1), we generally consider only
the non-negative divisors. Since d is a divisor of » if and only if —d is a divisor of #, this
sloppiness loses little information.

305

CHAPTER 17. NUMBER THEORY

Example 171 — Divisors of 12
The number 12 has 6 divisors -1 (1:12=12),2(2-6 =12),3(3:4=12),4(4-3=12),6
(6-2=12)and 12 (12-1=12).

12 is not divisible by e.g. 5 - we have 2 = 2 + 2, which is clearly not an integer.

Exercise 17.1. Compute the divisors of 7, 18 and 39.

The concept of divisibility raises many questions. First and foremost — how do we
check if a number is divisible by another? This question has one short and one long answer.
For small numbers, i.e. those that fit inside the native integer types of a language, checking
for divisibility is as simple as using the modulo operator (%) of your favorite programming
language. An integer # is divisible by d if and only if n % d == o, since this means % has
no remainder and is therefore an integer.

For large numbers, checking divisibility is more difficult. Some programming lan-
guages, such as Java and Python, have built-in support for dealing with large integers, but
e.g. C++ does not.

Dual Divisibility — dualdivisibility
Given two positive integers a and b with the same number of digits (1 < b < a < 10'*), compute the
number of divisors of a that have b as a divisor.
For example, with a = 96 and b = 12, there are 5 such numbers: 12, 24, 36, 48 and 96.

Solution. Assume that ¢ is such a number. The solution falls out from some applications
of the definition of divisibility. We have a = c¢q and ¢ = bq' for some positive integers g, q'.

The value of g’ is at most 9 by the following argument. If ¢’ > 10, we have a = cq > ¢ >
106, but then a has more digits than b, a contradiction. Thus, we can simply test all the
values of ¢ by letting ¢’ = 1,2, ..., 9 and verifying that the two conditions hold using the
modulo operator. O

Problem 17.2.

Meow Factor meowfactor

Evening Out 1 eveningout

Multiplication Table multtable (for 1 points)
Divisor Shuffle divisorshuffle

We now look at our first constructive problem - computing all divisors of an integer #.

306

https://heap.link/problem/dualdivisibility
https://heap.link/problem/meowfactor
https://heap.link/problem/eveningout1
https://heap.link/problem/multtable
https://heap.link/problem/divisorshuffle

N

® N 2w k@

17.1. DIVISIBILITY

Positive Divisors — positivedivisors
Given an integer 1 < n < 10"®, compute all the positive divisors of 7.

Solution. Every integer has at least two particular divisors called the trivial divisors,
namely 1 and # itself. If we exclude the divisor n, we get the proper divisors. To find the
remaining divisors, we can use the fact that any divisor d of n must satisfy |d| < |n| (why?).
This means that we can limit ourselves to testing whether the integers between 1 and # are
divisors of 1, a @(n) algorithm. We can do a lot better by exploiting a nice symmetry.

Hidden in Example 17.1 lies the key insight to speeding this up. It seems that whenever
we had a divisor d, we were immediately given another divisor gq. For example, when
claiming 3 was a divisor of 12 since 3 - 4 = 12, we found another divisor, 4. This is not a
surprise, given that the definition of divisibility (Definition 17.1) - the existence of the
integer g in n = dq - is symmetric in d and g, meaning divisors come in pairs (d,).
Exercise 17.3. Prove that a positive integer has an odd number of divisors if and only if it
is a perfect square.

Since divisors come in pairs, we can limit ourselves to finding one member of each such
pair. Furthermore, one of the elements in each pair must be bounded by /5. Otherwise,
we would have that n = d - 4 > \/n-\/n = n, a contradiction (again, 0 is a special case
here where we always have § = 0). This limit helps us reduce the time it takes to find the
divisors of a number to @ (+/7), which allows us to solve the problem sufficiently fast.

: procedure D1visors(N)

divisors < new list
for i from 1up to i* < N do

if Nmodi = 0 then
divisors.add(i)
if i # N/i then
divisors.add(¥)
return divisors O

Problem 17.4.
Pascal pascal
Almost Perfect almostperfect
Candy Division candydivision

Let us look at an application of this algorithm.

Subcommittees - subcommittees
In a parliament of P < 10'® people, the speaker wants to divide the parliament into (at least two)
disjoint subcommittees of equal size. Of course, the chair of such a subcommittee furthermore
wants to divide their subcommittee into (at least two) sub-subcommittees of equal size, and so on,

307

https://heap.link/problem/positivedivisors
https://heap.link/problem/pascal
https://heap.link/problem/almostperfect
https://heap.link/problem/candydivision
https://heap.link/problem/subcommittees

CHAPTER 17. NUMBER THEORY

until no further divisions can be performed.
What is the maximum number of levels of subcommittees can be created?

Solution. What different sizes may the first level of subcommittees have? Well, if we
perform a split into groups of size k, we get % such groups. Of course, this must be an
integer — i.e. k must be a divisor of P. This means we are looking for a sequence of numbers
€0>€1>C25- -+, Cpsuchthat cg = P, ¢jy1 | ciand ¢, = 1.

A simple solution would be to generate all divisors of P (the possible values of ¢;),
attempt a split into those group sizes, and then recursively solve the problem for them.
However, this would be too slow. As an example, if we take P = 8 086 598 962 041 600, the
sum of the square roots of its divisors is 6 636 882 083, so even finding only the ways to
split the parliament into 2-level committees would be too expensive.

Instead, we will use the following lemma:

Exercise 17.5. Prove that divisibility is a transitive relationship; if b | @ and c | b, then ¢ | a.

This means that the possible values of ¢;, i.e. the transitive closure of divisibility of P,
are the divisors of P. The problem reduces to finding the longest sequence of divisors of P
such that each divisor is also a divisor of the previous divisor. By constructing the directed
graph of all the divisors a with edges from a to its own divisors, we reduce the problem
to finding the longest path in a DAG. Unfortunately, this too is slow - the previously
mentioned P has 41472 divisors, leaving us with about (41§72) = 859942 656 modulo
operations to construct the graph.

What if we instead try to look at the entire sequence at once? We have P = ¢y, co = ¢141,
€1 = €242 --+> Cu—1 = Cuqn> Cn = 1 Where g; > 1. Inserting every equation into the previous
one gives us P = q14,---q,. Conversely, for each such choice of q;, we can construct a valid
sequence of ¢;. Note that every g; must have only trivial divisors, or we could replace it
with two numbers a, b with ab = g;, yielding a longer sequence with the same product.

Now comes the key insight. Let k be the smallest non-trivial divisor of P. This number
only has trivial divisors too; if k had a non-trivial divisor k' < k, then k' | P by the
transitivity of divisibility, and so k" is a smaller divisor of P. We claim that k can always be
chosen as one of the g; by the following argument. Pick an 7 such that k + ¢14,---q;—; and
k| q192---q; (one must exist since k 4+ 1and k | P). By applying the following theorem to
p=k,a=q-qi-1and b = q;, we get that k = q;.

Theorem 17.1 — Euclid’s Lemma
If p >1and b > 1 have only trivial divisors, p | ab and p + a, then p = b.

Proof. We prove a slightly stronger statement (called Euclid’s Lemma) instead; if p > 1

have only trivial divisors and p | ab, then either p | a or p | b. This implies the original

statement, since if p | b and b only have trivial divisors, p =1or p = b (but p > 1).
Consider the smallest p for which there exists a (smallest) a for which there exists

308

N

L 2N 2w 2w

17.1. DIVISIBILITY

a b where the theorem is false. We now prove that this minimal counterexample gives
rise to an even smaller counterexample.

First, a lacks non-trivial divisors. Otherwise, we can pick n, m such that a = nm
where 0 < n < m < a. Substitution gives us p | (nm)b = n(mb). Since n < a, we have
either p | n or p | mb, otherwise we find a smaller counterexample. We know that p + n.
Otherwise, as n | a, we get p | a which we have assumed to be false. Therefore, p | mb.
Because m < a, we again find that p | m or p | b (or we have a smaller counterexample).
As p + b (by assumption), we get p | m. Again, as m | a we get the contradiction p | a.
This proves that a lacks non-trivial divisors.

Next, we assume a < p. Otherwise, consider ¢ = a — p > 0. Since p | ab, we have
p | ab — pb = cb (see Exercise 17.6). Thus, p | c or p | b (c would otherwise be a smaller
counterexample than a). We have assumed p + b,so0 p | ¢, i.e. p | a — p. By the same
exercise, this implies p | a, contrary to our assumption.

Finally, let n be such that pn = ab. Since a is smaller than p and have only trivial
divisors, a | pn implies a | p or a | n or a would be a smaller counterexample of the
theorem. As p lacks non-trivial divisors, the latter must be true. This means there exists
m such that n = ma. Inserting this gives us that ab = pma, or b = pm. But this means
p | b, a contradiction.

Since the assumption of a smallest counterexample only lead to contradictions, we
find that that no such counterexample exists, meaning the theorem is true. O

Exercise 17.6. Prove thatifa |band a | c thena | b+ c.

With this, we are nearly there. As the sequence ¢; is independent of order, we can
let g1 = k, or equivalently, choosing the largest possible divisor of P as ¢;. How do we
choose the remaining ones? Well, for c,, the same argument says we should choose greatest
possible divisor of g, and so on. Since it must also be a divisor of P, we can iterate through
the smaller divisors (in descending order) and pick the first one that was also a divisor of
f. Eventually, we reach ¢, = 1.

A solution could look something like the following.

: procedure SUBCOMMITTEES(P)
divisors < Divisors(P)
sort divisors in descending order
ans < 0
for each d in divisors do
if d divides P then
ans < ans +1
P<d
return ans

This solution only requires computing and iterating through all divisors of P, giving us a

309

CHAPTER 17. NUMBER THEORY

©(\/P) solution. O
Problem 17.7.

Evening Out 2 eveningout2

Multiplication Table multtable (for 2 points)

This result that divisors comes in pairs happens to give us some help in answering our
next question, regarding the plurality of divisors. The above result gives us an upper bound
of 2/n divisors of an integer 7. We can do a little better, with ~ n3 being a commonly
used approximation for the number of divisors when dealing with integers which fit in
the native integer types." For example, the maximal number of divisors of a number less
than 10° is 32, 10 is 240, 10” is 1344, 10'® is 103 680.*

A bound we will find more useful when solving problems concerns the average number
of divisors of the integers between 1 and ».

Theorem 17.2 — Average Number of Divisors
Let d(i) be the number of divisors of i. Then,

id(i)z@(nlnn)

Proof. There are between "%’*1 and * integers between 1 and n divisible by i, since

every i’th integer is divisible by i. Thus, the number of divisors of all those integers is
bounded by

n n 1
ZQ=HZT=O(”IH”)
=) =
from above and
n —i+1 n1 "1
Zu:nz,._nJ,Zfznlnn—n+lnn:0("1n”)
= j=1J 1/

from below?.

“That X7, % = O(Inn) is a standard result from single-variable calculus.

This proof also suggest a way to compute the divisors of all the integers 1,2, ..., N.

'In reality, the maximal number of divisors of the interval [1, n] grows sub-polynomially, i.e., as O(n¢) for
every e > 0.
2Sequence A066150 from OEIS: http://oeis.org/Ae661560.

310

https://heap.link/problem/eveningout2
https://heap.link/problem/multtable
http://oeis.org/A066150.

N

R I

17.2. PRIME NUMBERS

Divisor Counts - divisorcounts
Count the number of positive divisors of every integer between 1 and N.

Solution. Solving the problem with the previous algorithm by computing the divisors
for every single integer would yield a ®(N+/N) algorithm. Instead, we flip the problem
around. For each integer i, we find all the numbers divisible by i (in @ () time), which are
0i,1i,2i,...| %]i. In total, this takes (N In N) time, a quite decent improvement. [

The pseudo code of this method is very short but good to put to memory.

: procedure COUNTDIVISORS(N)

counts < new int[N]
for i from2up toi < N do
for je {2i,3i,... }upto j< N do
increment counts[j] by 1

The technique is called sieving and is a quite common number theoretical method. We
use it again already in the next section.

Exercise 17.8. Assume that we instead only sieve with integers i up to \/n and use the fact
that if i is a divisor of 1, then % is too, so that we can count two divisors at a time. Does
this improve the time complexity of the algorithm?

Problem 17.9.
Organizator organizator

172 Prime Numbers

We regularly use divisibility as a tool to describe factorizations of an integer in various
ways. For example, given the number 12, we could factor it as 2 - 6, or 3 - 4, or even further
into 2 - 2 - 3. This last factorization is special, in that no matter how hard we try, it cannot
be factored further since 2 and 3 lack non-trivial divisors. It consists only of factors that
are prime numbers.

Definition 17.2 — Prime Number

An integer p > 2 is called a prime number if its only positive divisors are 1 and p. The
integers n > 2 that are not prime numbers are called composite numbers. Note that 1 is
neither prime nor composite.

Example 17.2 The first 10 prime numbers are 2, 3,5,7,11,13,17,19, 23, 29.

311

https://heap.link/problem/divisorcounts
https://heap.link/problem/organizator

CHAPTER 17. NUMBER THEORY

We alluded to this definition several times in the last chapter, where we instead talked
about numbers that only had positive divisors. For example, when referring to prime
numbers by name Euclid’s lemma becomes simpler: if a prime p | ab, either p | a or p | b.

Problem 17.10.
Longest Prime Sum longestprimesum
Shortest Composite Sum shortestcompositesum

Let us start with the simple questions — how do we determine if a number is a prime?
Using the knowledge from the previous section, this is simple. A number is prime if it
has only trivial divisors, so we can use the algorithm for counting divisors and instead
checking if the number has any divisor in O(v/N) time.

Problem 17.11.
Primality primality (for 1 point)
Blackboard Numbers primes2

Exercise 17.12. Let 7(N) be the number of primes up to N. Given a list of those primes,
show how to determine the primality of any integer up to N? in O(7(N)) time.

The result in Exercise 17.12 suggests that, after some precomputation, we can check
primality faster than testing all possible divisors. To know how much faster, we need to
know more about the number of primes.

There are an infinite number of primes. Euclid gave a simple proof in Elements. If
P1> P25 ... Pq are the only primes, then P = pp, ... p, +1is not divisible by any prime
number p;, since it must then also divide P — p;p; ... p,; = 1 (and by extension has no
divisors but the trivial ones), so it is not composite. This means P is a prime, but it is
greater than all the primes in the list, a contradiction. More relevant is instead the density
of primes, since that is what determines how 7(N) relates to N.

Theorem 17.3 — Prime Number Theorem

N
ﬂ(N)Nﬁ

i.e. the density of prime numbers in the interval [1... N]is ~ <. A consequence is
that the »’th prime number is approximately # In n.

The proof requires a lot of deep number theory, so we will not show it here. The
bound means by that precomputing primes and then using that list to check primality
you only gain a logarithmic factor. For values relevant in practice the approximation is
close to reality: the number of primes below 10° is 168, below 10° is 78 498, and below 10°
is approximately 51 - 10°.

Based on the Prime Number Theorem, one might have the reasonable suspicion that
prime numbers shouldn’t be that far apart. The Prime Number Theorem states that the

312

https://heap.link/problem/longestprimesum
https://heap.link/problem/shortestcompositesum
https://heap.link/problem/primality
https://heap.link/problem/primes2

17.2. PRIME NUMBERS

average distance between primes is ., but of course the maximum gap may be longer.

For all integers up to 10°, the maximum gap is 282, and for 10'® it is 1442.

Problem 17.13.
Enlarging Hash Tables enlarginghashtables

A very lax upper bound on the gaps that is occasionally useful is the following
one.

Theorem 17.4 — Bertrand’s Postulate
For all n > 2, there exists a prime p where n < p < 2n.

We omit the elementary but technically complex proof, since it is of little interest to us.

Prime Time - primetime
By Jon Marius Venstad. Nordic Collegiate Prog. Contest 2011. CC BY-SA 3.0. Shortened.

0Odd, Even and Ingmariay are playing a game. They start with an arbitrary positive integer and take
turns either adding 1 or dividing by a prime (assuming the result is still an integer). Once they reach
1, they each gets points corresponding to the smallest of the numbers their move resulted in. If a
player could make no move, their score is instead equal to the starting integer. They all play such
that they minimize their own score. If several possible moves would result in the same score for the
player, they have agreed to make the one that produces the smallest integer. They play in the order
Odd — Even — Ingmariay — ..., but alternate who starts the round.

In total, they play n < 1000 rounds of the game. Given the starting integers (between 1 and
10 000) for all rounds, output the final scores of the three players.

Solution. The game theoretic solution of the problem would be to construct the game
graph of all the integers with edges between possible transitions. One could then compute
the score a player would get for moving to a certain integer in the graph in the way
described in Section 16.5. Unfortunately, the game graph contains possible loops such
as 2 - 3 - 4 — 2. We can eliminate those loops with some number theoretical insights
together with the tie-breaking rules the players use when picking moves.

Let us investigate the behavior of the players more closely. If a player is presented with
a prime number, they clearly will divide with it to end the game and get 1 point. In other
cases, they may either add 1 or divide away a prime. This means we never want to move
from a prime pto p + 1.

It turns out that removing these moves makes the game acyclic. Assume to the contrary
that we currently are at a number a between two consecutive primes py and py.; and have
a sequence of moves that takes us back to a. The next sequence of moves will be to add
1 until we hit an integer py < b < py,; (remember we never want to go to py.; +1) and
sz“ < Pk so the
new result will be less than pj. Since we never make the transition px — px +1we can
never reach a again.

dividing some prime p; away. But f < % < %. By Bertrand’s Postulate,

313

https://heap.link/problem/enlarginghashtables
https://heap.link/problem/primetime

CHAPTER 17. NUMBER THEORY

What remains is to compute the transitions from each integer 1 < a < N. By precom-
puting all the primes up to 10 000 (check the primality of each one in O(\V/k) time), we
can afford to test whether all of them are divisors of each a. In total, this is on the order of

1101:139,4 ~ 107 edges in the game graph, which is a reasonable number. O

Factorizations
Since the prime numbers have no other divisors besides the trivial ones, a factorization
consisting only of prime numbers is special.

Definition 17.3 — Prime Factorization
The prime factorization of a positive integer n is a factorization of the form

e €2 €k
Pl . p2 pk

where p; are all distinct primes.

Example 17.3 The prime factorization of 228 is2-2-3-19.

Note that in the definition, we spoke of the prime factorization. This factorization is
indeed unique, except for a reordering of the p;. It may be “intuitively obvious” that this is
the case, but that is misguided notion. A proof can be constructed using Euclid’s Lemma
from the previous section (p. 308).

Theorem 17.5 — Existence and Uniqueness of Prime Factorizations
There exists a unique factorization of a positive integer N into prime numbers.

Proof. The existence part is a simple proof by induction. Assume that all integers up to
N —1has a prime factorization. If N is a prime, then N is a prime factorization of itself.
Otherwise, it has a non-trivial divisor, so we can write N = abwith1 < a < b < N.
By the induction hypothesis, a and b have prime factorizations. Concatenating the
two factorizations gives us a prime factorization of N. Thus, by induction, all positive
integers have prime factorizations.

Next, the uniqueness. We prove this too by induction. Our base case is N = 1 which
has the empty product as unique prime factorization. Assume that N has two distinct
prime factorizations N = p1p,---px = q142---q;, but all integers up to N — 1 has only
one. Consider the prime py. Since it divides the left side, it must also divide the right
side by the following argument. Let i be such that Q = g;---q;_; is not divisible by py,
but Qg; is. Such an i exists since when i = 1, the product Q is 1 (the empty product)
which is not divisible by p;, and with i = [we get Q = N which is divisible by p;.

314

N

A A T Y

N

17.2. PRIME NUMBERS

Then, by our version of Euclid’s Lemma, since p; and g; are primes, p | Qq; but
p + Q, we have p; = g;. Without loss of generality, we can assume that i = 1. If we
divide away this factor, we get that p;---py = q»---q; are both prime factorizations of
% < N, so by the induction hypothesis they are the same. That means the original
prime factorizations were also the same, a contradiction. Thus, N too has a unique

prime factorization, completing the proof. O

Factorization
Given an integer N, compute its prime factorization.

Solution. The simplest solution is to extend the method used to test primality. An integer
N can have at most one prime in its factorization that exceeds V/'N, since their product
otherwise would exceed N. Looping over all possible prime divisors up to /N and
factoring them out from N is sure to find all prime factors, except for possibly a single
one that was larger than \/N. The algorithm is called trial division.

: procedure TRIALDIVISION(N)

primes < new list
for i from 2 up to i* < N do
while Nmod i = 0do
primes.add(i)

N« ¥
if N # 1 then
primes.add(N) > N may have had a single prime factor > /N
return primes]

Exercise 17.14. In the TrialDivision algorithm, N is being modified in the loop when a
new prime is found. Is it a problem to use the new, updated N in the i* < N check in the
loop? Is the time complexity the same?

Problem 17.15.
A List Game listgame

The multiplicity of a prime number is a recurring topic of problems. To discuss it more
succinctly, the following notation is often used.

Definition 17.4 For integers a, b, k, we say that a* divides b exactly if a* | b but a**! + b.
We use the notation a* || b for this.

315

https://heap.link/problem/listgame

CHAPTER 17. NUMBER THEORY

Factorial Power — factorialpower
Given integers 2 < n, m < 10", determine the k for which n* || m!.

Solution. To start, we first connect divisibility with prime factorizations. Let n have the
prime factorization n = pi* - p3*---p;'. That d is a divisor of 7 is the same as having a prime

factorization d = pf{ . p;g--- pf’, , where 0 < e} < ¢;. It follows from the uniqueness of the
prime factorization and the fact that n = dq for some integer g. That the converse - any
number of this form is a divisor of n - is true, is also useful.

The point of this little sidebar is that we can now decompose the problem into only
looking at prime values of . The exponent laws gives us that n* = pi‘e‘ ~p§ez---p;‘e’, SO we
are looking for the largest k such that ke; does not exceed the power of p; in m!. Thus,

after factoring n the problem is reduced to determining how many times all the p; divides

”l!. Ihl'S equals
pi pi pi o

Exercise 17.16. Prove the above formula.

Since n can have at most log, (n) prime factors, and all terms after the log, (m) first

ones are zero, the complexity of the computation is O(y/n + log(n) log(m)). O
Problem 17.17.
Perfect Pth Powers perfectpowers

For the next problem, we will show a version of the divisor sieve that can factor integers.

Product Divisors — productdivisors
Given a sequence of n <1000 000 integers ay, dz, ... an < 108, compute the number of divisors of
A =TI, ai modulo 10° + 7.

Solution. Again, we use the prime factorization interpretation of divisors. Let A = [%, P

where p; are distinct primes. A simple combinatorial argument lets us count the number
of divisors of A. A divisor of A is of the form [T%_, pf’{ where e < e;. All the e] can take
any integer value between 0 and e; to fulfill this condition. This gives us e; + 1 choices for
the value of e]. Since each e] is independent, there are a total of (e; +1)(e2 +1) ... (ex +1)
numbers of this form, and thus divisors of A by the multiplication principle.

We are left with the problem of determining the prime factorization of A. This is
tantamount to computing the prime factorization of every integer between 1and 10, since
we could have a; = i for i =1...10°. Once this is done, we can go through the sequence
a; and tally up all primes in their factorization. Since an integer m has at most log, m
prime factors, this step is bounded by approximately nlog, 10° operations. Then, how

316

https://heap.link/problem/factorialpower
https://heap.link/problem/perfectpowers
https://heap.link/problem/productdivisors

1

A A

17.2. PRIME NUMBERS

do we factor all integers in [1...10%]? The solution is yet another variation of the sieving
method.

The divisor counting sieve can easily be modified to keep track only of whether integers
are prime or not. In fact, it only needs to sieve over primes this, since any non-prime has
prime divisors.

procedure FINDPRIMES(N)
isPrime < new list[N + 1] of true
for i from 2 up to N do
if isPrime[i] then
for je {2i,3i,... }upto j < N do
isPrime][j] < false

This particular sieve is called the Sieve of Eratosthenes.

Adapting it to also factoring integers is simple. The inner loop iterates over all integers
that have i as prime factor, so we just need to also count the multiplicity of i in j in the
loop (don’t forget to factor the primes themselves).

The last thing that remains is combining these steps - finding the factors of all integers
up to N, counting the number of times each prime appears in the numbers a;, and then
using the divisor formula count the number of divisors.

It is not as obvious what the complexity of this solution is. Clearly it is at most
O(nlogn), since it is linear in the number of prime factors (with multiplicity) of all
integers in an interval, and this is less than the number of divisors. We do a bit less work
though, since we only sieve using primes rather than all integers. If we count the total
work done (i.e. the number of prime factors with multiplicity over an entire interval), we

get
n n 1 1
—+—+...|=n -+ —+...
p;(p P’) pgzn(p P’)

per the previous problem. The sum can be bounded using the formula for sums of infinite
geometric series

* 1 1 p 1 1
—-l=—1-1= 1= -0f-
i=0 P 1= p-1 p-1 p
so that the total work is bounded by
1
©|n) —]|=0(nlnlnn)
pSnp

by the well-known number theoretic bound® }’,.,, % = O@(Inlnn). A small difference, but
nonetheless asymptotically better than the divisor sieve! The version of Eratosthenes sieve
that does not outright factor integers have the same time complexity as well. O

3This can be proven by a slightly better approximation of the Prime Number Theorem and basic calculus.

317

CHAPTER 17. NUMBER THEORY

Problem 17.18.
Prime Count
Non-Prime Factors

Flower Garden
Jazz it Up!

primecount (for 2 points)
nonprimefactors

flowergarden

jazzitup

Competitive Tip

When using the Sieve of Eratosthenes, we can save quite a bit of memory by using a bitset instead
since we only store a boolean state per number (whether it is prime or not). This gives us slightly
better cache behavior, improving the performance in real terms.

Problem 17.19.
Prime Count primecount (for 3 points)

173 The Euclidean Algorithm

The Euclidean algorithm is one of the oldest known algorithms, dating back to Greek
mathematician Euclid who wrote of it in his mathematical treatise Elements. It regards
those numbers which are divisors of two different integers, and extends into integer

equations of the form ax + by = c.

Definition 17.5 — Greatest Common Divisor

We call an integer d dividing both of the integers a and b a common divisor of a and b.
The greatest such integer is called the greatest common divisor, or GCD of a and b.

This number is denoted gcd(a, b), or with the shorthand (a, b) when clear from the

context.
Example 17.4 12 and 42 have divisors 1, 2, 3,4, 6,12 and 1, 2, 3, 6, 7, 14, 21, 42. Their
shared divisors are 1, 2, 3, 6, so their greatest common divisor is 6.

We warm up with some simple properties of the GCD.

Theorem 17.6 — Properties of the GCD
Let a, b, ¢ be non-negative integers. Then

(a,0)=a (17.1)
(a,a)=a (172)
(a,b) < max(a,b) (17.3)

318

https://heap.link/problem/primecount
https://heap.link/problem/nonprimefactors
https://heap.link/problem/flowergarden
https://heap.link/problem/jazzitup
https://heap.link/problem/primecount

17.3. THE EUCLIDEAN ALGORITHM

(ac,bc)=c-(a,b) (17.4)
(a,b) | (a,bc) (17:5)

When (4, ¢) = 1we call them relatively prime, which we denote as aLc. If aLc,then

(a,bc) = (a,b) (17.6)

Proof. We give a proof for the last equation — the others are good exercises to get
acquainted with the GCD.

It is sufficient to prove the equation for prime c, since that is enough for the following
proof by contradiction for composite c. Let ¢ be the smallest counterexample to the
equation for some a, b. Since c is composite, ¢ = pc’ for some prime p and ¢’ >
L. Since p | pc’ = cand (a,c) = 1, Eq. 17.5 gives that (a, p) = 1. Together with
the assumption that the equation holds for primes, we have (a, bc) = (a, (bc')p) =
(a,bc’). In a similar manner we can show that (a,c¢’) = 1. Since we assume that
¢ was the smallest counterexample of the equation for a, b, we can apply it to get
(a,bc’) = (a,b). Combining the two equality chains shows us that (a, bc) = (a, b).

For the prime case, let d = (a,b). Then, (a,bc) = d(3, %) by Equation 17.4.
Proving the equation is now equivalent to (4, % = 1. Assume that the equality is false.
Then there must be some prime p that divides and %. The first condition implies
p | a. However, since (g, ¢) = 1 we can not have p | ¢, or else they would share a divisor
greater than 1. This means p | %. Then pd is an even greater common divisor of a and

b, a contradiction. O

Exercise 17.20. Prove Equations 17.1-17.5.

Before we start looking into how to actually compute the greatest common divisor,
we take a detour into the land of number theoretic sums to also get some practice and
understanding of what the GCD actually means.

GCD Sum - gcdsum

> Do ged(i, f)

iIN jIN

Compute

where N < 10" is a given integer.

Solution. Now and then problems consist of computing some number theoretic sum.
There is a number of different techniques involved in this, so we show two different
solutions.

Let us first try to transform the sum into something simpler. We don’'t even know
how to compute the gcd of two numbers quickly yet, so it makes sense to attempt to
simplify that term. This approach is also supported by gcd(i, j) being a non-trivial term

319

https://heap.link/problem/gcdsum

CHAPTER 17. NUMBER THEORY

that requires computation to figure out, but that we actually know all the values it will
assume. Just from the definition, we understand that gcd(i, j) | i, and i | N, so ged(i,)
is a divisor of N too. Picking i = j = d, shows us that ged(i, j) = d assumes the value of
exactly the divisors of N.

This allows a common reformulation of sum problems: if we fix the possible values of
gcd(i, j) = d one at a time, for how many pairs i | N, j | N does the GCD term actually
assume this value? For each divisor, we then compute the contribution d - k; to the sum,
where k; is the number of pairs i, j with gcd(i, j) = d.

Evaluating k, for a fixed (i, j) = d is easy after reducing away the d. We can let i’

_ i

3
j' = %, and N’ = & Now, a small divisibility fact to assist us: divisibility is unaffected by
integer scaling, i.e. a | b is equivalent to ac | bc (a one-line proof using the definition). This
fact has two consequences: (i, j) = d is equivalent to (i, j') =1,and i, j | N is equivalent
to i’, j* | N'. This means that we can instead count the pairs i’, j* | N’ with (i’, j') = 1.

The remainder of the solution is now a combinatorial argument. Let [T, |x- p;' be the

prime factorization of N”. Since i’ and j' are divisors of N’ but themselves share no factor,
there are three cases for each p;: it divides i’ to some power, j' to some power, or neither
(a consequence of Euclid’s Lemma). In the first two cases we get to choose how many of
the e; factors to include in the divisor. In the third case, we only have a single choice. Thus,
there are in total 2e; + 1 choices for each factor which we multiply together for all primes.
The sum has now been transformed to its final, easily computable form:

Yld [T @ei+1)

dN\ PNy
A note on implementation: do not compute the prime factorization of each d | N using
e.g. trial division - this is too expensive. Instead, factor N and then construct all subsets
of prime factors of N recursively, one prime factor at a time.

The second approach involves a quite different way of computing the sum. It involves
studying the function we are computing, and figuring out how it is affected if we isolate
one of the prime powers dividing the argument of the function (N). This is a common
theme in number theory, where many sums and functions are easy to compute for prime
powers, with results hopefully easy to combine!

Let p be a prime where p* || N and N’ = p—l\i. Then, we can rewrite our sum as

i}i (Z chd(fp“,fp”))

b=0 \i|N’ jIN’
By Equation 17.4, we can factor out min(p®, p¥) from the innermost term. Assume
for the purpose of demonstration that a < b. Then, the sum simplifies to

Ek: Ek: (Z > p° gcd(i,j-pb‘“))

a=0b=0 \i[N’ jIN’

320

17.3. THE EUCLIDEAN ALGORITHM

By assumption p + i, so Equation 17.6 tells us that gcd(i, j - p¥) = ged(i, j). Further
simplification becomes possible:

a=0b i|NY jINT

[£5m0)(5 5w

The observant reader may notice that the left factor in the above product happens to be
same sum youd get if N = p¥, since gcd(p?, p¥) = p™in(@b)1 Its apparently enough to
compute the sum for all prime factors of N and multiply answers together. This is not
uncommon - in Section 17.5 we study more functions like this.

Now, the only thing that remains is to evaluate this particular sum for each prime
divisor. Luckily k and the number of primes in a number are both very small (< log, (N)),
so the sums can be evaluate with nested loops after N has been factorized. O

Finally, we get to the big question. How do we compute the greatest common divisor
of two integers?

Greatest Common Divisor - gcd
Given two non-negative integers a and b, compute (a4, b).

We already know of a ©(+/a ++/b) algorithm to compute (a, b), namely to enumerate
all divisors of a and b. A new identity unlocks the much faster Euclidean algorithm.

(a,b) = (a,b - a) (17.7)

We can prove the equality by proving an even stronger result - that all common divisors
of a and b are also common divisors of a and b — a. Assume d is a common divisor of a
and b, so that a = da’ and b = db’ for integers a’,b’. Then b — a = db’ —da’ = d(b' - a’),
with b’ — a’ being an integer, is sufficient for d also being a divisor of b — a. The converse
is shown in a similar way. Hence the divisors of a and b are the same as the divisors of a
and b — a. In particular, their largest common divisor is the same. The application of these
identities yield a recursive solution to the problem. If we wish to compute (a, b) where
a, b are positive and a < b, we reduce the problem to a smaller one by instead computing
(a,b), we compute (a,b — a). This gives us a smaller problem, in the sense that a + b
decreases. Since both a and b are non-negative, this means we must at some point arrive
at the situation where b = 0. Equation 17.1 tells us the GCD is then a.

One simple but important step remains before the algorithm is useful. Note how
computing (1,10%) requires about 10° steps right now, since we will do the reductions
(1,10°-1), (1,10° -2), (1,10° - 3)... The fix is easy — the repeated application of subtraction
of a number a from b while b > a is the modulo operation, meaning

(a,b) = (a,bmoda)

321

https://heap.link/problem/gcd

CHAPTER 17. NUMBER THEORY

This last piece of our Euclidean puzzle completes our algorithm, and gives us a remarkably
short algorithm. Note the recursive invocation to (b mod a, a) to ensure that a < b.

: procedure GCD(A, B)
if A =0 then
return B
return GCD(Bmod A, A)

Problem 17.21.
Temperature Confusion temperatureconfusion
Competitive Tip
The Euclidean algorithm exists as the built-in function __gcd(a, b) for most C++ compilers.
Whenever dealing with divisors in a problem, the greatest common divisor can be a

useful tool. This is the case in the next problem, where we also look closer at the prime
factorization of the GCD.

Granica - granica
Croatian Open Competition in Informatics 2007/2008, Contest #6
Given integers 2 < n < 100 integers ai, az, ..., d,, find all those numbers d such that upon division
by d, all of the numbers a; leave the same remainder.

Solution. What does it mean for two numbers a; and a; to have the same remainder when
dividing by d? Letting this remainder be r we can write a; = dn + rand a; = dm + r for
integers n and m. Thus, a; — a; = d(n — m) so that d is divisor of a; — a;! This gives us a
necessary condition for our numbers d. Is it sufficient? If a; = dn + rand a; = dm + 1/,
we have a; —a;j = d(n—m) + (r—r"). Since d is a divisor of a; — a; it must be a divisor of
d(n-m)+ (r—r") too,meaning d | r —+'. As0 < r,7' < d, we have that -d < r - ' < d,
implying r — r = 0 so that r = " and both remainders were the same after all.

The answer is then the set of common divisors of all numbers a; — a;. We claim that
this set is (even for the case of only two numbers) the divisors of their greatest common
divisor. Intuitively true for some, but to prove it we take aid in the prime factorizations of
divisors. A divisor of some integer

€k
.. .pk
is of the form
’ e;
.. .pk
where 0 < e} < e;. Then, the requirement for d to be a common divisor of # and another
number

m = p{'-p]

322

https://heap.link/problem/temperatureconfusion
https://heap.link/problem/granica

]

B o®

17.3. THE EUCLIDEAN ALGORITHM

is that 0 < e! < min(f;, e;). The converse, that a number with this property is indeed a
common divisor of n and m should be clear.

The largest such number is attained when e} = min(f;, e;) giving us the GCD. This
also explains why all common divisors must be divisors of the GCD.

Using this interpretation of the GCD, we can extend the result to finding the GCD d
of a sequence by, by, Consider any prime p, such that p? || b;. Then, we must have
pmin(avaz-) || d. This operation is exactly what the GCD algorithm does for two numbers.
Since min(q;, q2,...) = min(q;, min(qg,,...)), we can use the recursion formula d =
ged(by, by, ...) = ged(by, ged(by, . ..), simplest implemented in a loop:

: procedure MULTIGCD(sequence A)

ged < 0
for each a € Ado
ged < GCD(ged, a)

return gcd

Finally, we need to find all the divisors of the GCD to arrive at the answer. O

Problem 17.22.
Diagonal Cut diagonalcut

A complementary concept is the least common multiple.

Definition 17.6 — Least Common Multiple
The least common multiple of integers a and b is the smallest positive integer m such
thata | mand b | m.

Example 17.5 The multiples of 12 are 12, 24, 36, 48, 60, The multiples of 10 are 10,
20, 30, 40, 50, 60, The least common multiple of the numbers is 60.

Given a and b, ab is clearly a common multiple, but it doesn’t have to be the smallest.
Since a | m, we have that m = ak. The question is basically what extra factors we must
add to a in the form of k in order to have b | m. Previously, we have determined that the
condition for being a divisor is that when p¥ || b is one of the primes dividing b, then
p* | m has to hold. This basically means that we have to add whatever factors to a that are
additionally present in b. For example, since 10 =2-5and 12 = 2- 2 - 3, we need to add an
additional factor 2 and 3 to 10 to make a common multiple - 2-2-3-5 = 60

To compute the LCM easily, note that a multiple m of an integer a with prime factor-
ization

— pH €k
a=pypy

323

https://heap.link/problem/diagonalcut

CHAPTER 17. NUMBER THEORY

must be of the form
el e
ms=p;py
where e; < e!.
Thus, if m is to be a common multiple of a and another integer

b=pfp]

it must hold that max(f;, e;) < e, with e] = max(f;, e;) giving us the smallest such
multiple. Since max(e;, f;) + min(e;, f;) = e,- + fi, we get that lem(a, b) - gcd(a,b) =
ab. This gives us the formula lcm(a, b) = o d(a 5 b to compute the LCM. The order of
operations is chosen to avoid overflows in computing the product ab.

As for the GCD of multiple integers, it holds that

lem(a,b,c,...) =lem(a,lem(b,lem(c,...)))

Problem 17.23.
Smallest Multiple smallestmultiple

GCD and LCM - gcdandlem
Given that gcd(a, b) = x and lem(a, b) = y, where 1 < x, y < 10 determine the possible pairs

(a,b).

Solution. Without loss of generality, assume a < b. By the LCM formula, we have that
a | y. That means we can test all possibilities of a. Furthermore, the formula gives that
ab = xy, so that once we fix a we can compute the corresponding b easily. Then, we test

whether ged(a, b) = x, and if so, add it to our list of answers. O
Problem 17.24.

Das Blinkenlights dasblinkenlights

Doodling doodling

The Extended Euclidean Algorithm
Next up is the extended Euclidean algorithm. It is a way to solve certain integer equations.

Linear Diophantine Equation
Given integers 4, b, find an integer solution x, y to

ax + by =(a,b).

It is not obvious that a solution exists. Let S = {ax + by | x, y integers}. These numbers
are called the linear combinations of a and b. S is closed under addition and negation
(and thus also subtraction and multiplication). As divisibility is also closed under these

324

https://heap.link/problem/smallestmultiple
https://heap.link/problem/gcdandlcm
https://heap.link/problem/dasblinkenlights
https://heap.link/problem/doodling

17.3. THE EUCLIDEAN ALGORITHM

operations, all numbers of the form ax + by must be multiples of (g, b). We might then
stumble upon the (correct) hypothesis that the set contains (a, b) itself. Assume that d is
the smallest multiple of (a, b) in S. Then a — d[4] = amodd € S, since it is closed under
subtraction and multiplication. Similarly, bmodd € S. As 0 < amodd < d, we must
have amodd = 0 and bmod d = 0 as d was the smallest element of S. However, this is
equivalenttod |aand d | b,so d | (a, b), forcing d = (a, b) since d is a positive multiple

of (a,b).

This proof might remind you somewhat of the Euclidean algorithm. The proof and
the algorithm hide within them a method to write (g, b) as a linear combination of a
and b. Remember that during the computation of the GCD, we repeatedly used that
(a,b) = (b,amodb). Since amod b is a linear combination of a and b, it seems as if the
numbers (a, b) during the computation of the GCD always are linear combinations of a
and b. The algorithm concludes at (d, 0), at which point d = (a, b). If we only kept track
of which linear combination that was equal to d, we would be able to construct a solution
to ax + by = (a,b). Let us try this with an example, where we use [x, y] to denote the
number ax + by.

Example 17.6 — Extended Euclidean algorithm
Consider the equation 15x + 11y = (15,11) = 1.
Performing the Euclidean algorithm on these numbers we find that

(15,11) = ([1,0],[0,1]) = (11,15mod11) =

(11,15-1-11) = ([0,1],[1,0] =1-[0,1]) =

(11,4) = ([0,1], [1, -1]) = (4, 11mod 4) =
(4,11-2-4) = ([1,-1],[0,1] - 2[1,-1]) =

(4,3) = ([1,-1],[-2,3]) = (3,4mod3) =

(3,4-1-3) = ([-2,3], [, -1] - [-2,3]) =

(1) = ([~2,3], [3,-4]) = (1,3 mod1) =
(1,3-3-1) = ([3,-4],[~2,3] - 3[3,-4]) =

(1,0) = ([3,-4],[-11,15])
Verifying the results, 15-3 +11- (-4) = 45-44 = L.

325

N

® N 2w B ow

CHAPTER 17. NUMBER THEORY

Exercise 17.25. Find an integer solution to the equation 24x + 44y = 4.

The solution is easily coded either recursively or iteratively. We show the latter here
since it is almost exactly how we showed the algorithm in the example.

: procedure EXTENDEDEUCLIDEAN(a, b)

XasYa =1,0
Xp, Y = 0,1
while b + 0 do
t=13]
Xa>Xp = Xp,Xa — - Xp
Yas Vo = Yo>Ya —t Vb
a,b=b,a-t-b
return (X4, ya
This gives us a single solution. Finding the others is not much harder. Let a’ = (u“b)
and b’ =) Given two solutions

ax;+ by = (a,b) axy +by, =(a,b)
we can first factor out (a, b) to get
a'x;+b'y =1 a'x;+b'y, =1
Subtracting the equations from each other gives us that
' (01— x2) +b'(y1-y2) =0 = ' (3 - x2) = b'(y2 -)

Because (a’,b") = 1 we have b’ | x; — x,. Then there exists k such that x; — x, = kb’, so
X1 = x, + kb'. Inserting this gives us

a'(xy+ kb = x3)) =b"(y2 - n)
a'kb" =b'(y2 - y)
a'k=y,-n
y1=y2-ka'

Thus, any solution must be of the form

(1 + k—— —)forkeZ

b
OO
It is easily verified that any k also gives us a solution to this. This result is called Bezout’s
identity.

Exercise 17.26. Assume that (a, b) = 1. How can we find all the solutions to ax + by = ¢
for any integer c?

326

17.3. THE EUCLIDEAN ALGORITHM

Exercise 17.27. For what a, b and ¢ does ax + by = ¢ not have solutions?

Problem 17.28.
So You Like Your Food Hot? soyoulikeyourfoodhot
Jug Hard jughard

Generalized Knights — generalizedknights
A generalized knight is a special chess piece that moves around on an infinite chessboard. For two
given integers 1 < a # b < 10°, it moves by first choosing one of the four cardinal directions and
moves a steps, and then chooses one of the two orthogonal cardinal directions and moves b steps
(for example first up and then left or right, or first left and then up or down). Compute the minimum
number of moves the knight needs to move from (0,0) to (x, y) where1 < x, y < 10°.

Solution. A common approach to this kind of problem is to decompose it into the two
axes individually, and then resolve any interdependencies afterwards. There are in total
8 possible moves; (+a, +b) and (+b, +a). For a single axis, we instead have four moves:
+a, +b. Using these moves, the knight can only reach positions equal to as + bt for some
s, t in each direction. First of all, this tells us that x and y must be divisible by (a, b), since
as + bt always is. For simplicity, we can therefore divide a, b, x and y with (a, b) so that
(a,b) =1

Bezout’s identity suggests that we should start by finding any s and ¢ such that x = as+bt
using Euclid’s extended algorithm. Given such s and ¢, we know that using |s| a-moves and
|t| b-moves is enough for this axis. All possible solutions are (s + kb, t — ka) for integer k.

Let us now combine the axes. The X axis requires x, = |s, + kxb| a moves and
xp = |tx — kya| b moves, while the Y axis needs y, = |s, + k,b| a moves and y;, = |t, - k,a]
b moves. To be able to pair up the moves on each individual axis, the number of a-moves
on one axis must have the same parity as the number of b moves on the axis. This is weaker
than what might at first expect, i.e. that the number of moves must be equal. If x, > y;,
we can pair the first y, moves of these types up into (+a, +b) moves, and then alternate
having +b and —b for the remaining moves. This means that as long as x, — y, mod2 = 0
and y, — x, mod 2 = 0, we need at most max(x,, y,) + max(xp, ¥,) moves.

Going forward, we'll show that there is an optimal solution where certain properties
hold by modifying an arbitrary solution without making it worse. Assume that s, + kb > 0
and t, — kya <0, so that x, = s, + kyb and x;, = kya — t,. Then we can clearly improve
a solution by decreasing x;, to the point where t, — kya > 0. Consequently, it must be
optimal for s, + kb and t, — kx, to have the same sign (and similarly for s, + k, b and
t, — kya), or one of them being ~ 0. Furthermore,

Now;, assume that in an optimal solution, we have x,+b < y;. Then, increasing k, until
yp — b < x, < yp does not change the term max(x,, y,), but it may decrease max(x;, y,),
s0 it’s a harmless change. We can apply the same reasoning for all four variables, for the
conclusion that we can let x, ~ y, and x;, ® y,.

327

https://heap.link/problem/soyoulikeyourfoodhot
https://heap.link/problem/jughard
https://heap.link/problem/generalizedknights

CHAPTER 17. NUMBER THEORY

The case where some of x,, xj, ¥, and y;, are ~ 0 remains. Assume that e.g. x;, ~ 0, so
that the change we want to make to x, also increases x;,. We could then still increase x,
to xyp, since that does not increase max(x;, ¥,). At this point, we can either increase or
decrease x;, and y, in conjunction without adding moves, depending on which of x,, and
yp is the larger, until either x,,, y, ~ 0 or x, ~ y;, (but then we can improve the solution).

Thus there are only a few interesting cases: x,, ¥, ~ 0, xp, yo # 0, or x, ~ y;, and
Xp ~ Y4. The first two lets us solve for k, and k, directly, while the last case gives us
systems of two linear equations based on the signs of s, + kb and t, — kya. Finally, to
make sure get the parities — which only depends on k, and k,, and rounding right, we do
a small local search around each (ky, k,) to find the best solution. O

17.4 Modular Arithmetic

When first taught division, it is often done so using the concept of remainders. For example,
when dividing 7 by 3, you would get “2 with a remainder of 1”. In general, when dividing a
number a with a number 7, you would get a quotient q and a remainder r. These numbers
would satisfy the identity a = ng + r, with 0 < r < b.

Example 17.7 — Division with remainders
Consider division (with remainders) by 4 of the numbers 0, . .., 6. We have that

= 0, remainder 0, = 0, remainder 1,

= 0, remainder 2, = 0, remainder 3,

=1, remainder 1,

=1, remainder 0,

=1, remainder 2, =1, remainder 3.

Bloy A BRI KO
IR [O NS) TS (U I N S

Note how the remainder always increase by 1 when the numerator increased. You might
remember from Chapter 2 on C++ (or from your favorite programming language) that
there is an operator which computes this remainder called the modulo operator. Modular
arithmetic is computing on integers, where every number is taken modulo some integer 7.
Under such a scheme, we have that e.g. 3 and 7 are the same if computing modulo 4, since
3mod4 = 3 = 7mod4. This concept, where numbers with the same remainder are treated
as if they are equal is called congruence.

Definition 17.7 — Congruence
If a and b have the same remainder when divided by #, we say that a and b are congruent

328

17.4. MODULAR ARITHMETIC

modulo n, written
a=b (mod n).

An equivalent and in certain applications more useful definition is that a = b
(mod n) ifand onlyifn | a — b.

Exercise 17.29. What does it mean for a number a to be congruent to 0 modulo n?

When counting modulo something, the laws of addition and multiplication are some-
what altered:

+ || 0 1 2 x |01 2
010 1 2 01010 0
11 213=0 1011 2
211213=014=1 21012|4=1

To perform arithmetic of this form, we use the integers modulo n rather than the
ordinary integers. These has a special set notation as well: Z,,.

While addition and multiplication is quite natural (i.e. performing the operation as
usual and then taking the result modulo #), division is a more complicated story. For
real numbers, the inverse x ™' of a number x is defined as the number which satisfy the
equation xx ™! = 1. For example, the inverse of 4 is 0.25, since 4 - 0.25 = 1. The division
% is then simply a multiplied with the inverse of b. The same definition is applicable to
modular arithmetic:

Definition 17.8 — Modular Inverse
The modular inverse of a modulo is the integer a* such that aa™' =1 (mod n), if
such an integer exists.

Considering our multiplication table of Z3, we see that 0 has no inverse and 1 is its
own inverse (just as with the real numbers). However, since 2-2 = 4 =1 (mod 3), 2 is
actually its own inverse, so all integers are invertible. If we instead consider multiplication
in Z4, the situation is quite different.

x(0o|1]|2]3
0j0j0]j0]|O0
140|123
2110121012
3110131211

Now, 2 does not even have an inverse! When does an inverse exist? If a have an inverse,
then aa™ =1 (mod 1), so that n | aa™" — 1. By the definition of divisibility, aa™ -1 = nk
for some integer k. A small rearrangement to aa™' + nk = 1 brings us to a form known
from the extended Euclidean algorithm. If we view a™' and k as unknowns, this is the

329

CHAPTER 17. NUMBER THEORY

same as finding solutions to the Diophantine equation as + nt = 1, which is possible if and
only if (a,n) =1, i.e. when a is relatively prime to the modulo. This also provides us with
a way to find the modular inverse, namely by using the extended Euclidean algorithm.
By Bezout's identity, all possible values of a™ differ by a multiple of 1, so the inverse is
actually unique modulo n.

Just like the reals have a cancellation law for non-zero integers, so does modular
arithmetic but for the stronger notation of relatively prime ones.

Theorem 17.7
Assume (a,n) = 1. Then ab = ac (mod n) implies b = ¢ (mod n).

Proof. Since (a,n) = 1, there exists an a~* such that aa™' =1 (mod n). Multiplying

ab = ac (mod n) with a™* results in

aa'b=z=aa'c (modn)=bz=c (modn).

Competitive Tip

In C++, youre sometimes constrained by the range of the built-in integer types. For example,
to compute a - b modulo 10'® when a, b can also be up to 10", the intermediate multiplication
would overflow a 64-bit Long long. There are two common ways around this. First, many C++
compilers today support an extension called __int128_t that for 128-bit arithmetic, which is often
enough. Secondly, multiplication can be reduced to a logarithmic number of additions instead,
using a method called multiplication by doubling. If you write b in binary as ¥ b;2 the product
equals ¥ ab;2". Each individual term is easy to compute: you start with a and then multiply it
by 2 each time. Then you make sure to add together only the sums with b; = 1. No term ever
exceeds the modulo plus 2b before taking the modulo of the result, so this is fine for moduli up
to 10" even when using long long.

Exercise 17.30. Let d(s) be the sum of all the digits in s. Prove that d(s) =s (mod 9).

Problem 17.31.

Modular Arithmetic modulararithmetic
Candy Distribution candydistribution
The Magical 3 magical3
Divisibility Shortcut shortcut

Another common modular operation is exponentiation, i.e. computing a” (mod n).
While this can be computed easily in @(m), we can actually do better using a method

330

https://heap.link/problem/modulararithmetic
https://heap.link/problem/candydistribution
https://heap.link/problem/magical3
https://heap.link/problem/shortcut

17.4. MODULAR ARITHMETIC

called exponentiation by squaring. It is based on the recursion

Imodn ifm=0
a"modn=1a-(a"'modn)modn ifmodd

(a2 modn)?modn if m even

This procedure is clearly ®(log, m), since applying the recursive formula for even
numbers halve the m to be computed, while applying it an odd number will first make
it even and then halve it in the next iteration. It is very important that a> mod n is
computed only once, even though it is squared! Computing it twice causes the complexity
to degrade to ®(mlogm). This is exactly the same as multiplication by doubling, except
for exponentiation.

Problem 17.32.
I Hate the Number Nine nine

Chinese Remainder Theorem
The Chinese Remainder Theorem is an immensely useful theorem in number theoretical
problems. It gives us a way of solving systems of modular linear equations.

Theorem 17.8 — Chinese Remainder Theorem
Given an integer system of equations

x=a; (mod m)

x=a, (mod m,)

x=a, (modm,)

where the numbers my, ..., m, are pairwise relatively prime (i.e (m;, m;) = 1.), there
is a unique integer x (mod J]}_, m;) that satisfy the system.

Proof. The theorem is clearly true for n = 1, with the unique solution x = a;. Now,
assume there are at least 2 equations in the system. Take any ones of these, for example

x=a; (modm;) x=a, (modm,).

Let x = ay - m, - (m; ' mod m;) + a, - my - (m7 mod m,), where m7! mod m, is taken
2 1 1
to be a modular inverse of m; modulo m,. These inverses exist, since (mj, my) = 1 by

331

https://heap.link/problem/nine

CHAPTER 17. NUMBER THEORY

assumption. We then have that
x=ay-my-(m;'modm) =a, (mod m,)

x=ay-my-(m'modm,) =a, (modm,).

Since a solution exist for every a4y, a,, this solution must be unique - there are
my - my possible values for a;, a,, and m;, - m, possible values for x. Thus, the theorem
is also true for n = 2.

Assume that the theorem is true for k — 1 equations. Then, we can replace the
equations

x=a; (modm) x=a, (modm,)
with another equation

*

x=x" (mod mym,)

where x* is the solution to the first two equations since they hold for the exact same
values of x. This reduces the number of equations to k — 1. Repeat this procedure until
these is only a single equation left. O

Note that the theorem gave a constructive proof, allowing us to find what the unique
solution to such a system is.

Problem 17.33.
Chinese Remainder chineseremainder

Radar - radar
By Erik Aas. KTH Challenge 2014. CC BY-SA 3.0. Shortened.
We say that an integer z is within distance y of an integer x modulo an integer m if

z=x+t (mod m)

where |¢| < y. Find the smallest non-negative integer z such that it is:

« within distance y; of x; modulo m;,
« within distance y, of x, modulo m,, and

« within distance y3 of x3 modulo ms.

All the y; are between 0 and 300. All the x; and m; are between 0 and 10°.

Solution. The problem gives rise to three linear equations of the form
z=x;+t; (mod m;)

where —y; < t; < y;. If we fix all the variables t;, the problem reduces to solving the
system of equations using CRT. We could then find all possible values of z, and choose the

332

https://heap.link/problem/chineseremainder
https://heap.link/problem/radar

17.4. MODULAR ARITHMETIC

minimum one. This requires applying the CRT construction about 2 - 600* = 432 000 000
times. Since the modulo operation involved is quite expensive, this approach would use too
much time. Instead, let us exploit a useful greedy principle in finding minimal solutions.

Assume that z is the minimal answer to an instance. There are only two situations
where z — 1 cannot be a solution as well:

o z =0 - since z must be non-negative, this is the smallest possible answer

o z=x; — y; - then, decreasing z would violate one of the constraints

In the first case, we only need to verify whether z = 0 is a solution to the three inequalities.
In the second case, we managed to change an inequality to a linear equation. By testing
which of the i this equation holds for, we only need to test the values of ¢; for the two other
equations. This reduces the number of times we need to use the CRT to 600* = 360 000
times, a modest amount well within the time limit. O

Competitive Tip

While the choice of
X=a-my- (m;1 modmi) +az - my - (mf1 mod m;)

as solution the Chinese Remainder Theorem is normal to use in the proof because it explains
intuitively how the theorem works, it is problematic in implementations since it computes the
product of three large integers. When implementing it on code, you should instead use the
computation
a1 + ((a2 - a1) % m2) * miinv) % m2) * m1
where m1inv is the inverse of m; modulo m,. If you guarantee that m, < m;, 0 < a; < m; and
0 < a, < m; this handles all cases where m;m, fit in a long long.

In particular, the original choice of x fails for the Radar problem due to this overflow issue.

The classical CRT problem requires the moduli to be pairwise relatively prime. Clearly
this is necessary for the system of equations to always be solvable (with the trivial system
x =0 (mod 2) and x =1 (mod 2) as counterexample). It’s fortunately possible to say
something about when such a system is solvable, and finding a solution in the general case.

Theorem 17.9 — Chinese Remainder Theorem, general moduli
Given an integer system of equations

x=a; (mod m)

x=a, (modm,)

there is a unique integer x (mod lem(my, m,)) that satisfy the system if and only if

333

CHAPTER 17. NUMBER THEORY

a; = ap (mod (ged(my, my)).

Proof. We have x — a; = mjk; and x — a, = myk,. This means that

a, + mlkl =dp+ m2k2

ay — a = myky — mik,

SO
(Wszz, mlkz) | a) — aj.

Then (my, my) | a1 — a, so the only if part holds.
Now, let ym; = (my, m,) (mod m;) (this exists by the extended Euclidean algo-

rithm). Pick
a; — dy

XxX=a+-—-
(ml)mZ)

my-y.

Clearly x = a; (mod m;). Furthermore,
a, —

Gty 1y) (my, my) =a; (mod m;)

X =a+

so this is a solution.
Uniqueness is proven using the same bijectivity argument as before. For each

of the m; possible choices of a;, there are (m:"’fm) choices of a, such that a; = a,
(mod ged(m;y, my)). Thus there are (;"11)’;‘122 5 = lem(my, my) such equation systems for
a given my, m,. Since each of them have a solution modulo lem(m;, m,), there must
be exactly one solution per system. O

Problem 17.34.

CRT (non-relatively prime moduli) generalchineseremainder

Gears in Action gears

Remainder Reminder remainderreminder

Miller-Rabin Primality Testing

With the tools from modular arithmetic, we have gained the tools to check primality in
logarithmic time using the Miller-Rabin test. The mathematical details are not very useful
for us. It is motivated by properties of modular exponentiation shown in the next section.
The classical Miller-Rabin test is probabilistic, but for integers up to 64 bits a very fast
deterministic variant has been found.

The algorithm, which we won't prove the correctness of or motivate in any way, is the
following:

: procedure ISPRIME(N)
if N = 2 then

334

https://heap.link/problem/generalchineseremainder
https://heap.link/problem/gears
https://heap.link/problem/remainderreminder

17.5. EULER’S TOTIENT FUNCTION

return true
if N =1or N is even then
return false
S « the largest d such that 2¢ | (N —1)
D
for each a in {2, 325,9375, 28178, 450775, 9780504, 1795265022} do
P < a’modN
if P+0and P +1and P # N — 1 then
for S — 1 times do
P« (P-P)modN
if P = N —1then
restart the loop on line 8 with the next a
return false

return true

Note that the above code requires multiplication of two integers up to N, so be careful
about overflows and use 128-bit integers (or multiplication-by-doubling) when performing
the multiplications!

Problem 17.35.
Primality primality (all subtasks)
Divisions divisions

17.5 Euler’s Totient Function

Now that we have talked about modular arithmetic, we finally have the tools to give
numbers which are not divisors of some integer n their well-deserved attention. This
discussion will start with the ¢-function.

Definition 17.9 — Euler’s totient function
Euler’s totient function ¢(n) is defined as the number of integers in [1, n] that are
relatively prime (i.e. only shares the trivial divisors with) to .

Example 17.8 Whatis ¢(12)? The numbers 2, 4, 6, 8,10 all have the factor 2 in common
with 12 and the numbers 3, 6, 9 all have the factor 3 in common with 12. This leaves us
with the integers 1, 5,7, 11 which are relatively prime to 12. Thus, ¢(12) = 4.

For prime powers, ¢(p¥) is easy to compute. The only integers which are not relatively

prime to ¢(p*) are the multiples of p, which there are %‘ = p*~! of, meaning

¢(p*) = p* - p = p(p-1).

335

https://heap.link/problem/primality
https://heap.link/problem/divisions

CHAPTER 17. NUMBER THEORY

It turns out that ¢(7) has the same property that the GCD Sum problem has.

Theorem 17.10
¢(n) is a multiplicative function, which means that if a 1 b, then

¢(ab) = $(a)(b).

Proof. We show that there is an invertible mapping between integers 1 < x < ab coprime
to ab, and pairs 1< i < g and 1< j < b coprime to a and b, respectively. The mapping
we use is x - (x mod a, ymod b).

First, note that x is coprime to ab if and only if it is coprime to both a and b. Thus,
we must have that x mod a is also coprime to a, and y mod b is also coprime to b, so
the mapping does indeed map each x to such a pair (i, j).

Furthermore, this mapping is invertible: for each (i, j) we have that

x=i (moda)
x=j (mod b)

which has exactly one solution in 1 < x < ab by the Chinese remainder theorem.
The number of (i, j), of which there are ¢(a)¢(b), is thus equal to the number of
x, of which there are ¢(ab)), which proves the theorem. O

For multiplicative functions, we can reduce the problem of computing arbitrary values
of the function to finding a formula only for prime powers. Using the multiplicativity of ¢
we get the simple formula

Sy ... pP) = ¢ (pi)-¢(p) = i (1 = 1)-pP " (pi — 1).

Problem 17.36.
Relatives relatives

Exercise 17.37. Prove that

n=>) ¢(d).

d|n
Computing ¢ for a single value reduces to factoring the number. If we wish to compute
¢ for an interval 1, n] we can thus use the Sieve of Eratosthenes.

Problem 17.38.
Farey Sums fareysums

This seemingly convoluted function might seem useless, but is of great importance via
the following theorem:

336

https://heap.link/problem/relatives
https://heap.link/problem/fareysums

17.5. EULER’S TOTIENT FUNCTION

Theorem 1711 — Euler’s theorem
If a and # are relatively prime and n > 1,

a®™ =1 (mod n)

Proof. The proof of this theorem isn’t trivial, but it is number theoretically interesting
and helps to build some intuition for modular arithmetic. The idea behind the proof is
to consider the product of the ¢(n) positive integers less than n which are relatively
prime to n. We will call these x1, x5, ..., X¢(n)- Since these are all distinct integers
between 1 and #, they are incongruent modulo n. We call such a set of ¢(#) numbers
relatively prime to n and all incongruent modulo # a complete residue system (CRS)
modulo 7. Next, we will prove that ax;, ax,, ..., axg also form a CRS modulo 7.

We will start with the first property, that they are all relatively prime to n. Since
both a and x; are relatively prime to n, neither number have a prime factor in common
with n. This means ax; have no prime factor in common with 7 either, meaning the
two numbers are relatively prime.

To prove that they are incongruent modulo n we use the cancellation property
of modular arithmetic (Theorem 17.7). If ax; = ax; (mod n), the cancellation law
gives us x; = x; (mod). Since all x; are incongruent modulo 7, we must have i = j,
meaning all the numbers ax; are incongruent as well. Thus, these numbers did indeed
form a complete residue system modulo #.

If axy, ..., axg(,) form a CRS, we know every ax; must be congruent to some x;,
meaning

axi-aXg(ny = X1°Xg(ny (mod n)

Factoring the left hand size turns this into
a¢(”)x1---x¢(n) = Xx1Xg(ny (mod n)
Since all the x; are relatively prime to n, we can again use the cancellation law, leaving
a®™ =1 (mod n)

completing our proof of Euler’s theorem. O

Competitive Tip
For primes p we get a special case of Euler’s theorem since ¢(p) = p - 1:
a’'=1 (mod p)

when p + a, called Fermat’s Theorem. Multiplying both sides by a™' gives that a? > = a™'

337

CHAPTER 17. NUMBER THEORY

(mod p), which is an easy way of computing modular inverses modulo primes using exponentiation-
by-squaring.

Exponial — exponial
By Per Austrin. Nordic Collegiate Programming Contest 2016. CC BY-SA 3.0. Shortened
Define the exponial of n as the function
1

2
_1y(n-2)
exponial(n) = "™

Compute exponial(#) (mod m) where1< n, m < 10°.

Proof. Euler’s theorem suggests a recursive approach. Since n® (mod m) is periodic
(in e), with a period of ¢(m), maybe when computing (""" we could first compute
e = (n-1)" modulo ¢(m) and only then compute #n° (mod m)? This is of course just
the same problem but with n := n —1and m := ¢(m). Alas, this only helps us when n1m,
since that is a necessary precondition for Euler’s theorem.

A standard number theoretical transformation comes to the rescue: instead of working
modulo some integer m, we can take the prime factorization of pi*---pj* and compute
modulo each of its its prime powers p?'. The result modulo m is then computed by the
Chinese remainder theorem. While some prime powers will share factors with #, they are
much easier to handle. When computing #° mod p$’ we have two cases. Either p; | n, in
which case n° = 0 (mod p§') whenever e > e;. Otherwise, p;Ln, and n® = pemod ¢(p")
(mod p{") by Euler’s theorem.

This suggests that as long as e > max(ey, ..., ex), n° is still periodic. Furthermore, ¢;
is bounded by log, 1. Otherwise, p¢' > 2!°%:" = , a contradiction.

Since log, (10%) ~ 30 and 4321 > 30, we know that n° is periodic whenever n > 5. For
n = 4, the exponial equals only 262144, meaning we can compute it naively.

One final insight remains. If we use the recursive formula, i.e. first computing e =
(n —1)""2" mod ¢(m) and then n?(m+emodé(m) mod m, we still have the problem
that n can be up to 10°. We would need to perform a number of exponentiations that
is linear in n, which is slow for such large n. However, our modulus will actually very
quickly converge to 1. While the final result is taken modulo m, the first recursive call is
taken modulo ¢(m). The recursive call performed at the next level will thus be modulo
¢(¢p(m)), and so on. This sequence decreases very quickly based on two facts. For even
m, ¢(m) = ¢(2)¢(5) = ¢(5) < 5. For odd m, ¢(m) is even. Any odd m consists only
of odd prime factors, but since ¢(p) = p —1 (i.e. an even number for odd primes p) and ¢
is multiplicative, ¢(m) must be even. Thus ¢(¢(m)) < 5 for m > 1(1is neither even nor
contains an odd prime factor). This means the modulus will become 1 in a logarithmic
number of iterations, so the recursive step reaches a simple base case quickly. With this,

338

https://heap.link/problem/exponial

17.5. EULER’S TOTIENT FUNCTION

we are done.

ADDITIONAL EXERCISES

Problem 17.39.

Joint Attack

Inheritance

I'm Thinking of a Number
Primal Representation
Happy Happy Prime Prime
Prime Path

Three Digits

GCD Sum 2

Repeating Decimal

Cocoa Coalition

Inverse Totient

LCM Pair Sum

Ternarian Weights
Rational Sequence
Factor-Free Tree

Guma

NoOTES

O

jointattack
inheritance
thinkingofanumber
primalrepresentation
happyprime
primepath
threedigits
gcdsum2
repeatingdecimal
cocoacoalition
inversetotient
lcmpairsum
ternarianweights
rationalsequence
factorfree

guma

A highly theoretical introduction to classical number theory can be found in Hardy and
Littlewood’s An Introduction to the Theory of Numbers [22]. While devoid of exercises and
examples, it is very comprehensive.

Victor Shoup’s A Computational Introduction to Number Theory and Algebra [45]
instead takes a more applied approach, and is freely available under a Creative Commons
license at the author’s home page.*.

If you're interested in understanding more about the Miller-Rabin test, see e.g. Miller
[37] and Rabin [41].

4http://www.shoup.net/ntb/

339

https://heap.link/problem/jointattack
https://heap.link/problem/inheritance
https://heap.link/problem/thinkingofanumber
https://heap.link/problem/primalrepresentation
https://heap.link/problem/happyprime
https://heap.link/problem/primepath
https://heap.link/problem/threedigits
https://heap.link/problem/gcdsum2
https://heap.link/problem/repeatingdecimal
https://heap.link/problem/cocoacoalition
https://heap.link/problem/inversetotient
https://heap.link/problem/lcmpairsum
https://heap.link/problem/ternarianweights
https://heap.link/problem/rationalsequence
https://heap.link/problem/factorfree
https://heap.link/problem/guma
http://www.shoup.net/ntb/

CHAPTER 17. NUMBER THEORY

340

CHAPTER 18

Combinatorics

Combinatorics is a mathematical area with as many definitions as it has sub-fields. A very
handwavy description is that it, in broad strokes, deals with counting objects, proving
that objects exist, constructing objects and sometimes finding the best object. The various
topics in combinatorics are unified in that they tend to deal with discrete structures.

A lot (if not most!) of algorithmic problem solving falls under the wide umbrella of
combinatorics - for example, graph theory is considered to be a sub-field of combinatorics.
In this chapter we mainly study the branch of combinatorics known as enumerative
combinatorics — the art of counting. For example, we count the number of ways to shuffle a
list of N items such that no item is in its original place, the number of shortest axis-aligned
paths through a grid and many other things. A large number of combinatorial counting
problems are based on a few standard techniques which we learn in this chapter.

We also include some non-counting combinatorics, like a detailed analysis on permu-
tations and further study on invariants, a concept you have come across in a few other
chapters.

18.1 The Addition and Multiplication Principles

The addition principle states that, given a finite collection of disjoint sets we can compute
the size of the union of all sets by adding up the sizes of our sets, i.e.

|SIU82U"'Usn|:|Sl|+|sz|+"'+|sn|.

Example 181 Assume that we have 5 different types of chocolate bars (the set C), 3
different types of bubble gum (the set G), and 4 different types of lollipops (the set
L). These form three disjoint sets, meaning that we can compute the total number of
snacks by summing up the number of snacks of the different types. Thus, we have
|C| + |G|+ |L| = 5+ 3 + 4 =12 different snacks.

Later on, we will see a generalization of the addition principle that handles cases where
our sets are not disjoint.

341

CHAPTER 18. COMBINATORICS

The multiplication principle, on the other hand, states that the size of the Cartesian
product §; x S; x --- x §,, equals the product of the individual sizes of these sets, i.e.

[S1% Sa %+ x S| = (8] - S+ Sl.

Example 18.2 How many subsets are there of an N-element set? For each element i
there are two choices: either it’s included, or it’s not. By the multiplication principle,
there are 2V such choices (and thus subsets).

Exercise 18.1. How many pairs of disjoint subsets A, B are there of an N-element set?

Problem 18.2.
Best Compression Ever bestcompression
Character Development character

The addition principle is often useful when we solve counting problems by case analysis.

Example 18.3 How many four letter words consisting of the letters a, b, ¢ and d
contain exactly two letters a? There are six possible ways to place the two letters a:

aa___ a_a_
a__a _aa_
a_a aa

For each of these ways, there are four ways of choosing the other two letters (bb, bc,
cb, cc). Thus, thereare4 +4+4+4 +4 +4 = 6 -4 = 24 such words.

Problem 18.3. Incognito incognito

Later counting principles are mostly built from these basic building blocks. However,
in many combinatorial counting problems, it’s sufficient only to apply these two principles
a number of times.

Kitchen Combinatorics - kitchencombinatorics
By Per Austrin. Northwestern Europe Regional Contest 2015. CC BY-SA 3.0. Shortened.
The Swedish Chef is planning a three-course dinner: a starter course, a main course, and a dessert.
His cook-book offers a wide variety of choices for each course, though some of them do not go well
together (for instance, you cannot serve chocolate moose and sooted shreemp at the same dinner).
Each potential dish has a list of ingredients. Ingredients are in turn available from a few different
brands. Each brand is unique, so using a particular brand of an ingredient results in a different
dinner experience than using another brand of the same ingredient. Some ingredients may appear
in several of the chosen dishes. When an ingredient is used in multiple dishes, Swedish Chef uses

342

https://heap.link/problem/bestcompression
https://heap.link/problem/character
https://heap.link/problem/incognito
https://heap.link/problem/kitchencombinatorics

18.1. THE ADDITION AND MULTIPLICATION PRINCIPLES

the same brand of the ingredient in all of them.

There are r <1000 different ingredients, s, m, d < 25 available starter dishes, main dishes and
desserts, respectively, and n < 2000 pairs of dishes that do not go well together. For each ingredient
i, there are b; < 100 different brands. Each dish may contain up to 20 different ingredients.

How many different dinner experiences are there that he could make, by different choices of
dishes and brands for the ingredients? If the number of different dinner experiences Swedish Chef
can make is more than 10*®, output “too many”.

Solution. The solution is a addition-multiplication principle combo like the one in Ex-
ample 18.3. We can simplify the problem considerably by brute forcing over the coarsest
component of a dinner experience, namely the courses included. Since there are at most 25
dishes of every type, we need to check up to 25° = 15 625 choices of dishes. By the addition
principle, we can compute the number of dinner experiences for each such three-course
dinner, and then sum them up to get the answer.

Some pairs of dishes do not go well together. At this stage in the process we exclude
any triple of dishes that include such a pair. We can perform this check in constant time if
we save the incompatible dishes in 2D boolean vectors, so that e.g. badStarterMain[i][]
determines if starter i is incompatible with main dish j.

For a given dinner course consisting of starter a4, main dish b and dessert ¢, only the
set of ingredients of three dishes matters since the chef will use the same brand for an
ingredient even if it is part of two dishes. The next step is to compute this set by taking the
union of ingredients for the three included dishes. This step takes @(k, + kj, + k.) time.
After that, the only remaining task is to choose a brand for each ingredient. Assigning
brands is an ordinary application of the multiplication principle, where we multiply the
number of brands available for each ingredient together. O

Problem 18.4. Dunglish dunglish

The objects we are meant to count often have some kind of recursive structure. We
already solved several combinatorial counting problems in Chapter 7 on recursion. At first
we counted objects by constructing them recursively one at a time (e.g. by backtracking),
but not much later we gained the tool of dynamic programming to speed up counting
solutions. Next, we look at a typical recursive counting problem.

Booming Business — boomingbusiness
By Mees de Vries. BAPC preliminaries 2017. CC BY-SA. Shortened.

You are an expert in bonsai, the Japanese art of cultivating small trees in small containers. You
recently rented a store to sell your creations. In the store’s window display, you want to show the
most impressive tree possible that is exactly as tall as the window, and exactly as heavy as the display
floor allows.

By definition a bonsai tree consists of a single branch, with zero or more smaller bonsai trees
branching off from that branch.

343

https://heap.link/problem/dunglish
https://heap.link/problem/boomingbusiness

CHAPTER 18. COMBINATORICS

Ty

Figure 18.4: Four distinct examples of bonsai trees. Their weights are 1,4, 6,6 and their heights are
1,2,3,3.

A tree’s weight is equal to the number of branches that appear in it, while its height equals the length
of the longest chain of branches from the root to the top of the tree.

Compute the number of different trees you could grow that has exactly height 1 < 4 < 300 and
weight 1 < w < 300.

Solution. In combinatorics, it's sometimes easier to count the number of objects where an
integer property, such as the height of a tree, is equal to at most a given value, rather than
exactly that value (and sometimes, it’s the other way around). Luckily, these two problems
can easily be transformed to each other. To find the number of objects where the property
is exactly h, you count the number where it’s at most /& and subtract those where it’s at
most /1 — 1. For the reverse situation, you just add up all those objects with h equal to all
the values you're interested in. In this problem, it’s easier to count the number of trees of
height up to h, and subtract away those of height up to h - 1.

Let T(h,w) be the number of trees of height < h and weight equal to w. To progress,
we should try to break the tree down recursively. The problem already describes the
recursive structure of the tree: start with a branch, and then build some new trees. It is
then natural to ask what the properties are of the leftmost smaller bonsai tree of the larger
tree. If we know its height (at most h —1) and weight w' (arbitrary between 1and w —1), we
can simply cut it oftf from the main tree and count the number of ways that the remaining
tree, with height at most k and weight w — w’, looks. By trying all choices of w’, we find
the recursion

w-1
T(h,w)= > T(h-1Lw)-T(h,w-w").
w'=1
This recursion takes ® (hw?) time to evaluate with dynamic programming. The base cases
remain, but they are straightforward. O

Problem 18.5.
Card Magic cardmagic
Bobby’s Bet bobby

344

https://heap.link/problem/cardmagic
https://heap.link/problem/bobby

18.2. PERMUTATIONS

18.2 Permutations

We are now going to build upon the simple combinatorial principles of addition and
multiplication to study more complex combinatorial objects. One of the most fundamental
one is the permutation.

Definition 18.1 — Permutation
A permutation of a set {ay, ..., a,} isan ordering (aj, ..., a},) of all the elements in
the set.

Example 18.4 The set {1, 2,3} has 6 permutations:

(1,2,3), (1,3,2), (2,1,3),
(2,3,1), (3,1,2), (3,2,1).

Our first task is to count the number of permutations of an n-element set S. We use
an iterative procedure that constructs a permutation one element at a time. Assume that
the permutation is the sequence (ay, as, ..., a,). As the first element ay, any of the the n
elements of S can be chosen. Once this assignment has been made, there are n — 1 possible
choices for a, (any element of S except a;). In general, when we are to select the (i +1)’th
value a;,; of the permutation, i elements have already been included in the permutation,
leaving n — i options for a;,;. By the multiplication principle, we have nn- (n —1)---2 -1
sequences of choices in total. No permutation is constructed in two different way and
every permutation can be constructed in this way, so this also counts exactly the number
of permutations.

Problem 18.6. Counting Greedily Increasing Supersequences countinggis

This number is so useful that it has its own name and notation.

Definition 18.2 — Factorial
The factorial of a non-negative integer #, denoted !, is defined as the product of the
first n positive integers, i.e.

n
nl=1-2-n= Hi.
i=1

For n = 0, we use the convention that the empty product is 1.

This sequence of numbers begins1, 1, 2, 6, 24,120, 720, 40 320, 362 830, 3 628 800, 39 916 800
forn = 0,1,2,...,11. It is good to know the magnitudes of these numbers, since they
are frequent in time complexities when doing brute force over permutations. Asymp-

345

https://heap.link/problem/countinggis

CHAPTER 18. COMBINATORICS

totically, they grow as n®("). More precisely, the well-used Stirling’s formula* gives the
approximation

- (2) o))

Exercise 18.7. In how many ways can 8 persons be seated around a round table, if we
consider cyclic rotations of a seating to be different? What if we consider cyclic rotations
to be equivalent?

Problem 18.8.
Euler’s Number eulersnumber
Name That Permutation namethatpermutation

Permutations as Bijections

The word permutation has roots in Latin, meaning “to change completely”. We are now
going to look at permutations in a very different light, justifying the etymology of the
word.

Given a set such as {1,...,5}, we can fix some “base” ordering of its elements such as
(1,2,3,4,5). A permutation 7 = (1,3, 4, 5, 2) of this set can then be seen as a movement of
these elements. Of course, this same movement can be applied to any other 5-element set
with a fixed permutation, such as (a, b, ¢, d, e) being transformed to (g, ¢, d, e, b). This
suggests that we can consider permutations as rules which describe how to move - permute
- the elements of a list, rather than as an ordering of any set in particular.

Such a rule can also be described as a function 7 : [n] — [n], where (i) describes
what element should be placed at position i. Thus, the permutation (1, 3, 4, 5, 2) would
have (1) =1, 7(2) =3, 7(3) =4, n(4) =5, n(5) = 2.

1 2 3 4

Vol b
(i) |1 3 4 5 2

Since each element is mapped to a different element, the function induced by a permu-
tation is actually a bijection. By interpreting permutations as function, all the theory from
functions apply to permutations too.

We call (1,2,3,...,n -1, n) the identity permutation, since the function given by the
identity permutation is actually the identity function. Permutations can also be composed
in the same way as functions. Given two permutations « and f, their composition «af3
is also a permutation given by af(k) = a(B(k)). Composing a = (5,4,3,2,1) and
B =1(1,3,4,5,2) would result in the permutation

'Named after James Stirling (who have other important combinatorial objects named after him too), but
stated already by his contemporary Abraham de Moivre.

346

https://heap.link/problem/eulersnumber
https://heap.link/problem/namethatpermutation

18.2. PERMUTATIONS

i |1 2 3 4 5
Vol
BGi) |1 3 4 5 2
Vbl
af(i) |5 3 2 1 4

This is called multiplying permutations, i.e. o is the product of ¢ and 7. If we multiply a
permutation 7 by itself n times, we call the resulting product 7".

An important property of permutation composition follows from its functional prop-
erties, namely associativity, i.e. (a«f3)y = a(By). This property is shared with ordinary
multiplication of real numbers. Similarly, we take the liberty of dropping the parentheses
and write a8y instead. Thanks to the associativity, tricks from previous chapters such as
exponentiation by squaring and segment trees for computing the product of segments of
a list of permutations can be used.

Problem 18.9.
Slom slom
Parade parade2

A related concept is that of the cycle decomposition of a permutation. If we start with an
element i and repeatedly apply a permutation on this element (i.e. take i, (i), m(7(i)),...)
we will at some point find that 77 (i) = i, at which point we will start repeating ourselves.

i 1 2 3 4 5
bbb
n(i) |2 1 4 5 3
bbb
() |1 2 5 3 4
bbb
@) |2 1 3 4 5
bbb
@ |1 2 4 5 3
bl b
P@G{) |2 1 5 3 4
bbb
@) |1 2 3 4 5

We call the k distinct numbers of this sequence the cycle of i. For m, we have two
cycles: (1,2) and (3,4,5). Note how 7(1) = 2 and 7(2) = 1 for the first cycle, and
n(3) = 4,7m(4) = 5,7m(5) = 3. It gives us an alternative way of writing it, namely as the
concatenation of its cycles: (1,2)(3,4,5).

To compute the cycle decomposition of a permutation 7, we repeatedly pick any
element of the permutation which is currently not a part of a cycle, and compute the cycle
it is in using the method described above. Since every element is processed exactly once,
this procedure is ®(n) for n-element permutations.

347

https://heap.link/problem/slom
https://heap.link/problem/parade2

CHAPTER 18. COMBINATORICS

Problem 18.10. Job Switching jobbyte

Given a permutation 7, we define its order, denoted ord 7, as the size of the set
{m, 7%, 7%,...}. This is the smallest positive integer k such that 7* is the identity permu-
tation. In our example, we have that ordr = 6, since 7° was the first power of 7 that was
equal to the identity permutation.

How can we quickly compute the order of 7? The maximum possible order of a per-
mutation happens to grow rather quickly (it is e(***())V1087 in the number of elements
n). Thus, trying to compute the order by computing 7* for every k until 7* is the identity
permutation is too slow. Instead, we can use the cycle decomposition. If a permutation of
7 has a cycle (cy, ¢z, . .. ¢;), we know that

ﬂl(cl) = cl,ﬂl(cz) = cz,...,nl(cl) =q

by the definition of the cycle composition. Additionally, this means that (7')*(¢;) =
(7'%)(c1) = c1. Any power of 7 that is a multiple of I acts as the identity permutation on
this particular cycle.

This fact gives us an upper bound on the order of 7. If its cycle decomposition has
cycles oflength I, I, . . ., Iy, then k can be chosen to be the lowest common multiple* of
all those cycle lengths. The permutation 7 = (2,1,4,5, 3) had two cycles, one of length 2
and 3. Its order was lcm(2,3) = 2 3 = 6. This is also a lower bound on the order, which
follows from a fact left as an exercise:

Exercise 18.11. Prove that if 7 has a cycle of length I, we must have [| ord 7.

Dance Reconstruction - dance
By Lukas Polacek. Nordic Collegiate Programming Contest 2013. CC BY-SA 3.0. Shortened.
Marek loves dancing and is due to attend the coming wedding of his best friend Miroslav. For a
whole month he worked on a special dance for the wedding. The dance was performed by N < 10000
people and there were N marks on the floor. Each mark had an arrow to another mark, and every
mark had exactly one incoming arrow. The arrow could be also pointing back to the same mark.

At the wedding, every person first picked a mark on the floor and no two persons picked the
same one. Every 10 seconds, there was a loud signal when all dancers had to move along the arrow
on the floor to another mark. If an arrow was pointing back to the same mark, the person at the
mark just stayed there and maybe did some improvised dance moves on the spot.

A year later, another wedding is coming up, and Marek would like to do a similar dance. He
found two photos from exactly when the dance started and when it ended. Marek also remembers
that the signal was triggered 1 < K < 10° times during the time the song was played, so people
moved K times along the arrows. The photos shows the initial and final positions for every dancer.

Given the two photos, can you help Marek reconstruct any possible placement of the arrows on
the floor, or determine that no such placement exists?

*Return to the chapter on number theory, page 17.6 if you do not remember how this is computed.

348

https://heap.link/problem/jobbyte
https://heap.link/problem/dance

18.3. ORDERED AND UNORDERED SUBSETS

Solution. The problem can be rephrased in terms of permutations. First of all, the dance
corresponds so some permutation 7 of the dancers, given by where the arrows pointed.
This is the permutation we seek in the problem. We are given the permutation a, so we
seek a permutation 7 such that 7X = g, i.e. the K’th root of 7.

When given permutation problems of this kind, the cycle decomposition is a great
avenue of attack. Since the cycles of are all independent of each other under exponenti-
ation, it is a good guess that the decomposition can simplify the problem. Assume that
X has some cycle (cy, ..., ;). Can we not just find the K’th root of it and assume that
is how the cycle looked in 7? Sadly not — the cycle may lack a fifth root. This has to do
with how cycles are affected by taking powers. For example, a cycle of 10 elements in 7
would actually decompose into five cycles of length two in 7°, or two cycles of length 5 in
7%, This means that cycles of some length in 7X can not always have had that same length
in 7. In general, how cycles are decomposed under taking powers involves the divisors of
l'and K:

Exercise 18.12. Prove that a cycle of length [in a permutation 7 decomposes into gcd (1, K)
!
gcd(1,K)

cycles of length in 7%,

While the cycles of 7 were not completely independent, at least cycles of different
lengths could not have been part of a single cycle in 7. This gives us a small step forward:
partition all cycles of 7 by their lengths.

Furthermore, we can generate all the possible ways that this decomposition may
be reversed. For each possible cycle length I we can compute the number of cycles it
decomposed to, and their length. There are N possible lengths, so it takes @ (N log(N+K))
time to find them due to the GCD computation.

Given all the ways to combine cycles, a knapsack problem remains for each cycle length
of X If we have a cycles of length [in 77X, they must be partitioned into sets of those
sizes that allows recombination (given by the computation in the previous paragraph).
This step takes ®(ac) ways, if there are ¢ ways to combine a-length cycles. Since Y a < N
and ¢ < N, over all a this is bounded by N? which is fast enough.

Once it has been decided what cycles are to be combined, only the act of computing
a combination of them remains. This is not difficult on a conceptual level, but is a good
practice to do on your own (the solution to Exercise 18.12 basically outlines the reverse

procedure). O

Problem 18.13. The Power of Substitution substitution

18.3 Ordered and Unordered Subsets

A variation of the permutation counting problem is to count the number of ordered
sequences containing exactly k distinct elements from a set.

349

https://heap.link/problem/substitution

CHAPTER 18. COMBINATORICS

Definition 18.3 An ordered k-subsets of a set S = {ay,...,a,} is an ordered list of k
distinct elements (ay, ..., a;) chosen from S.

We can compute the number of ordered k-subsets by taking all the permutations of the
entire set of n elements and grouping together those whose k first elements are the same.
Taking the set {a, b, ¢, d} as an example, it has the permutations:

abcd bacd cabd dabc
abdc badc cadb dacb
acbd bcad cbad dbac
acdb bcda cbda dbca
adbc bdac cdab dcab
adcb bdca cdba dcba

Once the first k elements in the permutation are fixed, there are (n — k)! ways to order
the remaining n — k elements. All the n! permutations are thus split into groups of size

(n — k)! so there are (nﬁi'k)' such groups. We denote the number of ordered subsets by

n!
P(n, k) = CETk
Note that this number can also be written as n - (n —1)---(n — k + 1), which hints
at an alternative way of computing these numbers. We can perform the ordering and
choosing of elements at the same time. The first element of our sequence can be any of
the #n elements of the set, the next element any but the first (leaving us with #n — 1 choices),
and so on. In contrast to permutations, we stop after choosing the k’th element, which we
candoin (n — k +1) ways.

Binomial Coeflicients

Ordered subsets are far less interesting than their counterpart unordered k-subsets. The
numbers of unordered subsets of size k taken from an set of size n are called the binomial
coefficients, and are one of the most useful combinatorial number there is.

To compute the number of k-subsets of a set of size #, start with all the P(n, k) ordered

subsets. Any particular unordered k-subset can be ordered in exactly k! different ways.

P(n,k)
k!

when determining P(n, k) itself. For example, consider again the ordered 2-subsets of the

Hence, there must be unordered subsets, by the same grouping argument used

350

18.3. ORDERED AND UNORDERED SUBSETS

set {a, b, c,d}, of which there are 12:

ab ba ac ca
ad da bc cb
bd db cd dc

The subset {a, b} can be ordered in 2! ways - the ordered subsets ab and ba. Since each
unordered subset is responsible for the same number of ordered subsets, we find the
number of unordered subsets by dividing 12 with 2!, giving us the 6 different 2-subsets of
{a,b,c,d}: {a,b},{a,c},{a,d}, {b,c}, {b,d} and {c,d}.

Definition 18.4 — Binomial Coefficient
The number of k-subsets of an n-set is called the binomial coefficient, written as

()= oo

This is read as “n choose k”, and sometime written as C(n, k) or C}..

Note that

n\ (n-k+1)-(n-k+2)-(n-1)-n
(k)_ 1-2-(k-1) - k '

They are thus the product of k numbers, divided by another k numbers. With this fact in
mind, it does not seem unreasonable that they should be computable in O(k) time. Naively,
one might try to compute them by first multiplying the k numbers in the nominator, then
the k numbers in the denominator, and finally divide them.

Unfortunately, both of these numbers grow quickly. Indeed, already at 21! we have
outgrown a 64-bit integer. Instead, we compute the binomial coefficient by alternating
multiplications and divisions. We start with storing 1 = % Then, we multiply with n — k +1
and divide with 1, leaving us with ”%k“ In the next step we multiply with n — k + 2 and

divide with 2, having computed w

. After doing this r times, we are left with
our binomial coeflicient. This doesn’t overflow a 64-bit unsigned integer until computing
(gg) (i.e., all binomial coeflicients with n < 62 fits).

One big question mark remains — why must the intermediate results always be integer?
This must be true if our procedure is correct, or we will at some point perform an inexact
integer division, leaving us with an incorrect intermediate quotient. If we study the partial

results more closely, we see that they are binomial coefficients themselves, namely ("‘f +1),

(”_]2<)5 (47))> (1)- Certainly, these numbers must be integers. As we just showed, the
binomial coeflicients count things, and counting things tend to result in integers.

351

CHAPTER 18. COMBINATORICS

As a bonus, we discovered another useful identity in computing binomial coefficients:

(-3

Exercise 18.14. Prove this identity combinatorially, by first multiplying both sides with k.

Exercise 18.15. Another option is to change the order of multiplication of the numerator
ton,n—-1,...,n—k+1.

1. Is this better, i.e. overflows later?

2. This order of multiplication also works, in that all partial results are integers. They
are also binomial coefficients. Prove this by finding a similar binomial coefficient
identity as before, and prove it combinatorially in the same way.

We have one more useful trick up our sleeves. Currently, if we want to compute e.g.
(1(1)2:), we have to perform 10° — 1 operations. To avoid this, we exploit a symmetry of
the binomial coefficient. Assume we are working with subsets of some n-element set S.
Define a bijection from the subsets of S onto itself by taking complements. Since a subset
T and its complement S \ T are disjoint, we have |S \ T| = |S| - |T|. This means that every
0-subset is mapped bijectively to every n-subset, every 1-subset to every (#n — 1)-subset,
and every r-subset to every (n — r)-subset.

However, if we can bijectively map r-subsets to (n — r)-subsets, there must be equally
many such subsets. Since there are (") subsets of the first kind and (,") subsets of the
second kind, they must be equal:

n\ (n
(r) B (n - r)'

More intuitively, our reasoning is “choosing what r elements to include in a set is the

same as choosing what #n — r elements to exclude”. This is very useful in our example of
. 10°

computing (10971

binomial coeflicients in @ (min(r, n — r)) time instead of @(r).

Problem 18.16.

Locked Treasure lockedtreasure
Binomial Coefficients binomialcoefficients

), since this equals (129) =10°. More generally, this enables us to compute

Sjecista - sjecista
Croatian Olympiad in Informatics 2006/2007, Contest #2
In a convex polygon with N sides, line segments are drawn between all pairs of vertices in the
polygon, so that no three line segments intersect in the same point. Some pairs of these inner
segments intersect, however.

352

https://heap.link/problem/lockedtreasure
https://heap.link/problem/binomialcoefficients
https://heap.link/problem/sjecista

18.3. ORDERED AND UNORDERED SUBSETS

Figure 18.2: A polygon with 6 vertices. There are 15 intersecting segments.

Given 3 < N <100, determine how many pairs of segments intersect.

Solution. A classical counting problem, sometimes given with the alternative formulation
to count the number of regions formed in the polygon. If we compute the answer by
hand starting at N = 0, we get 0,0,0,0,1,5,15,35. A quick lookup on OEIS® suggests
that the answer is the binomial coefficient (IZ) While searching online certainly is a legit
strategy when solving problems, it’s not a particularly insightful approach, nor is it useful
at contests where access to the Internet is restricted.

Figure 18.3: Four points taken from Figure 18.2.

Instead, let us find some kind of bijection between the objects we're interested in
(intersections of line segments) and something easier to count. This strategy is one of
the basic principles of combinatorial counting. An intersection is defined by two line
segments, of which there are (I;r) Does every pair of segments intersect? In Figure 18.3,
two segments (the solid segments) do not intersect. However, two other segments which
together have the same four endpoints do intersect with each other. This suggests that line
segments was the wrong level of abstraction when finding a bijection. On the other hand,
if we choose a set of four points, the segments formed by the two diagonals in the convex
quadrilateral given by those four points will intersect at some point (the dashed segments
in Figure 18.3).

Conversely, any intersection of two segments give rise to such a quadrilateral - the
one given by the four endpoints of the segments that intersect. This is a bijection between

3https://oeis.org/A0ee332

353

https://oeis.org/A000332

CHAPTER 18. COMBINATORICS

intersections and quadrilaterals, meaning that there must be an equal number of both.
There are (N) such choices of quadrilaterals, and thus equally many intersections. [

4
ny (n-1 n-1
(k)_(k—1)+(k)
This exercise also demonstrates another way of computing binomial coefficients up
to (Z) in ®(nk) time. It has a better overflow behavior than the previous method since
it never needs to compute values larger than the final result. It's commonly used when

you need the result of all binomial coefficients with n up to a limit (normally computed
modulo something).

Exercise 18.17. Prove that

Exercise 18.18. Prove that

1L Theo () =2"

2. Tio(-DF(}) =0(n>0)
3. Thoo (1)2k =3"

4+ T (1) = G1)

Exercise 18.19. By the previous exercise, (Z) = O(2"), but what’s the lower bound on the
2

growth of the central binomial coefficient? Prove that (Z) =Q(27).
A stronger result is that (Z) =0(\2/—;). This follows by e.g. Stirling formula.
2

Exercise 18.20. If k is fixed, how fast does (Z) grow asymptotically in terms of n?

Problem 18.21.

Election election
Gnoll Hypothesis gnollhypothesis
Dyck Paths

In a grid of width W and height H, we stand in the lower left corner at coordinates (0, 0),
wanting to venture to the upper right corner at (W, H). To do this, we are only allowed
two different moves - we can either move one unit north, from (x, y) to (x, y + 1) or one
unit east, to (x +1, y). Such a path is called a Dyck path.

As is the spirit of this chapter, we ask how many Dyck paths there are in a grid of size
W x H. The solution is based on two facts: a Dyck path consists of exactly H + W moves,
and exactly H are northbound (so W are eastbound). Conversely, any path consisting of
exactly H + W moves of which H are northbound moves is a Dyck path.

If we consider e.g. the Dyck path in Figure 18.4, we can write down the sequence of
moves we made, with the symbol N for northbound moves and E for eastbound moves:

EENENNEEENEEN.

354

https://heap.link/problem/election
https://heap.link/problem/gnollhypothesis

18.3. ORDERED AND UNORDERED SUBSETS

Figure 18.4: A Dyck path on a grid of width 8 and height 5.

H+W)
H

such sequences, since this is the number of ways we can choose the subset of positions
which should contain the N moves.

Such a sequence must consist of all H + W moves, with H “N”-moves. There are (

Figure 18.5: The two options for the last possible move in a Dyck path.

If we look at Figure 18.4, we can find another way to arrive at the same answer. Letting
D(W, H) be the number of Dyck paths in a W x H grid, some case work on the last move
gives us the recurrence

D(W,H) =D(W -1,H) + D(W,H -1)
with base cases
D(0,H) =D(W,0) =1L

WEe introduce a new function D’, defined by D’(W + H, W) = D(W, H). This gives us
the recurrence

D'(W+H,H)=D'(W-1+H,W-1)+D'(W+H-1,H-1)
with base cases
D'(0,0) =D'(H,H) = 0.
These relations are satisfied by the binomial coefficients (Exercise 18.17).

Exercise 18.22. Prove that Y7 (7)(,".) = (M.

While Dyck paths sometimes do appear directly in problems, they are also a useful
tool to find bijections to other objects.

355

CHAPTER 18. COMBINATORICS

Sums
Given integers 1 < N, K < 10°, compute the number of solutions to the integer equations

a+ay+---+ay=K

where 0 < a;. Since the answer may be large, compute it modulo 10° + 7.

Solution. Given a Dyck path such as the one in Figure 18.4, what happens if we count the
number of northbound steps we take at each x-coordinate? There are a total of W + 1
coordinates and H northbound steps, so we except this to be a sum of W +1 (non-negative)
variables with a sum of H. This is indeed similar to what we are counting, and Figure 18.6
shows this connection explicitly.

ay Gz a3 G4 G5 Qg Q7 ag ag
0+0+1+2+0+0+14+0+1=5

Figure 18.6: A nine-term sum as a Dyck path.

This mapping gives us a bijection between sums of k terms with a sum of # and Dyck
paths on a grid of size (k — 1) x n. We already know how many such Dyck paths there are:
(n +k—1)

0)

What remains is only to compute

n+k-1y (n+k-1)!
(n) n!l(k-1)!
modulo 10° + 7. So far, we haven't tried computing binomial coefficients this large. In this
particular case, it’s easy enough to use the normal method of computing factorials, and
then taking modular inverses to with them. Since 10° + 7 is prime and # + k — 1 is smaller
than that, it is guaranteed that both factorials have inverses. O

We learned that one way of looking at the binomial coefficient (Z) is as the number of
ways to order an (a + b)-character string of a letters A, and b letters B. A different way
to view the binomial coefficient formula in this context is that we have a string of a + b
letters which can be permuted in (a + b)! ways, but then each identical string appears
a! - b! times, since that’s the number of ways the A’s and B’s can be permuted to produce

356

18.3. ORDERED AND UNORDERED SUBSETS

the same string. In the same way we can count the number of different strings with ¢;
copies of the letter i. This is called the multinomial coefficient, and is written as

(C1+C2+"'+Cn)
C15€25...5Cy

Problem 18.23. Anagram Counting anagramcounting
Catalan Numbers

A special case of Dyck paths is paths on a square grid that do not cross the diagonal of the
grid. See Figure 18.7 for an example.

Figure 18.7: A valid path (left) and an invalid path (right).

We are now going to count the number of such paths, the most complex counting
problem we have encountered so far. It turns out that there is a straightforward bijection
between the invalid Dyck paths, i.e. those who do cross the diagonal of the grid, to Dyck
paths in a grid of different dimensions. In Figure 18.7, the right grid contained a path that
cross the diagonal. If we take the part of the grid just after the first segment that crossed
the diagonal and mirror it in the diagonal translated one unit upwards, we get the situation
in Figure 18.8.

Figure 18.8: Mirroring the part of the Dyck path after its first diagonal crossing.

We claim that when mirroring the remainder of the path in this translated diagonal,
we always get a new Dyck path on the grid of size (n — 1) x (n +1). Assume that the
first crossing is at the point (c, ¢). Then, after taking one step up in order to cross the
diagonal, the remaining path goes from (¢, c + 1) to (n,n). This needs n — ¢ steps to
the right and # — ¢ — 1 steps up. When mirroring, this instead turns into n — ¢ — 1 steps

357

https://heap.link/problem/anagramcounting

CHAPTER 18. COMBINATORICS

up and n — ¢ steps right. Continuing from (¢, ¢ + 1), the new path must thus end at
(c+(n-c=-1),c+1+(n-c)) = (n-1,n+1). This mapping is also bijective.

This bijection lets us count the number of paths that do cross the diagonal: they are
(2"). The numbers of paths that does not cross the diagonal is then (*") - (*")).

n+l n+l

Definition 18.5 — Catalan Numbers
The number of Dyck paths in an n x # grid is called the n’th Catalan number, equal to

(Zn) (2n) (211) n (Zn) 1 (Zn)
C, = _ = - = .
n n+1 n n+l\n n+l\n
The first few Catalan numbers* are 1,1, 2, 5, 14, 42,132, 429, 1430.

Problem 18.24. Catalan Numbers catalan

Catalan numbers count many other objects, most notably the number of balanced
parentheses expressions. A balanced parentheses expression is a string of 2n characters
$183 - . . S, of letters ('and), such that every prefix s;s, . . . sy contain at least as many letters
(‘as). Given such a string, like (()())(()) we can interpret it as a Dyck path, where (is a
step to the right, and) is a step upwards. Then, the condition that the string is balanced is
that, for every partial Dyck path, we have taken at least as many right steps as we have
taken up steps. This is equivalent to the Dyck path never crossing the diagonal, giving
us a bijection between parentheses expressions and Dyck paths. The number of such
parentheses expressions are thus also C,,.

Sometimes, it can be easier to reason about one of these alternatives proving bijections
with Catalan numbers.

Fiat - fiat
By Steven Halim. NUS Competitive Programming. CC BY-SA 3.0. Shortened.
The king of Rectangle Land has just received a royal gift, a stairstep-shaped piece of wood with
1 < N <100000 steps. The king accepted the gift out of courtesy, but he actually has a disdain for
stairstep-shaped pieces of wood with N steps. He decided to give you, his royal advisor, a royal fiat to
divide this stairstep-shaped piece of wood with N steps into more reasonable shapes: N rectangles
with integer dimension. In how many ways, modulo 10° + 7, can this be done?

“https://oeis.org/Aeoo108

358

https://heap.link/problem/catalan
https://heap.link/problem/fiat
https://oeis.org/A000108

18.3. ORDERED AND UNORDERED SUBSETS

:I_\ _—I _—I _:I_‘ _—I_‘

5 =5 L LB

Figure 18.9: All the possible divisions of a 4 step staircase into 4 rectangles.

Solution. First, a solution that comes from a lot of experience. The online judge version
of the problem gives the sample cases N = 4,7 with answers 14, 429. For the experienced
combinatorist, just seeing those outputs is enough to ring the Catalan bell and immediately
submit a solution assuming that the answer is C, in a contest®.

If we can not immediately guess that the answer is the Catalan numbers based on
this, we must instead come to suspect this based on some intuition. In this case, if one
squints really hard, it is possible to map sequences of balanced parenthesis with a rectangle
division. The height of the topmost rectangle in the i’th column tells us how many bracket
pairs that the #’th bracket pair (counting in order of starting brackets) should contain,
including itself. For example, the second division on the last row in Figure 18.9 can be
interpreted like this. The first bracket pair contains only itself. The second bracket pair
should also contain the third bracket pair. The third bracket pair should contain only
itself. The fourth bracket pair should contain only itself. Thus, the bracket sequence is
(O(0))(). Similarly, the third division on the last row would represent ()(()()). Itis
slightly difficult to see why no division can generate an unbalance parenthesis sequence,
and vice versa, why any sequence of rectangle heights corresponding to a bracket sequence
in this way even results in a valid division of the staircase. This is good combinatorial
practice, however.

Exercise 18.25. Prove that the above construction is a bijection between rectangle divisions
and balanced parenthesis sequences.

For completeness, we show a maybe slightly more natural way of solving the problem.
We have previously counted combinatorial objects by finding a recursion for the number
in terms of smaller objects of the same sort. Here, this would mean finding a recursion

5One of the world’s best competitive programming coaches, Andrew Stankevich, is famous for creating
combinatorial problems where the answers for small N in the sample cases starts out with 1, 2, 5,14, 42, but
then diverge. This has baited many contestants throughout the years to incorrectly submit Catalan number
solutions on his contests.

359

CHAPTER 18. COMBINATORICS

for the number of divisions of an N-step shape ¢(N) using smaller values of c(N). If the
recursion is sufficiently fast, this can allow a dynamic programming solution.

Something that all the examples for N = 4 in Figure 18.9 share is that the rectangle
starting in the bottom-left corner of the figure always have one of the four diagonal squares
as its top-right corner. If this is the case in general, we could definitely create some kind of
recursion. Removing this rectangle from the figure would actually divide the shape into to
new staircases: one immediately above the rectangle, and one to the right (except for the
edge cases where we only get a single staircase). To see that is indeed true we use another
observation from the examples. All the squares that form the diagonal are necessarily the
top-right corner N of different rectangles. Since there are only N rectangles in total, one
of must have the bottom-left square as corner.

To form the recursion we apply the addition and multiplication principles. If the
rectangle has its corner in the i’th diagonal square counted from the top, the top shape
is a staircase with i — 1 steps, and the right one with N — i steps. Summing over all such
corners, we get the recursion

¢(N) = ;c(i -1c(N -1i).

Unfortunately this path was not sufficient to solve the problem without more Catalan
knowledge®. Evaluating this recursion up to N takes quadratic time, and N is quite large.

Figuring out by intuitive means that this recursion generates the Catalan sequence
with the correct base case (c(0) = 1, the empty staircase, divided into an empty set of
rectangles), is hard. We could perhaps see the similarity to the identity

()-20)67)

from one of the exercises on Dyck paths to guess that a similar interpretation and proof
strategy could work (although this is reaching a bit). A proof by Dyck path’s is quite
straightforward: if c(N) is the number of Dyck paths that do not cross the diagonal, look
at which column the path first touches the diagonal. Now count the number of paths from
that point to the start and end corners in the grid. O

Problem 18.26.
Fiat fiat
Catalan Square catalansquare

SWith a wider toolbox containing e.g. generating functions we could actually have determined a closed
form for the recursion by hand and see that it results in the Catalan numbers.

360

https://heap.link/problem/fiat
https://heap.link/problem/catalansquare

18.4. THE PRINCIPLE OF INCLUSION AND EXCLUSION

The Binomial Theorem

We end here with a short note on why binomial coefficients are named just so. The
background is the expression (x + y)", and what happens when you multiply it out. For
the first few n, you get the expressions

(x+)" =1x%°
(x+y)' =1-x"y" +1-x%!
(x+9)2=1-x%" +2-x'y' +1-x%2

(x+9)° =1y +3-x%y" +3-x'y* +1-x°°.

Here we've written out perhaps more coeflicients and exponents than necessary to drive
home a point, which is that in the expression (x + y)", the term x’ y"~ has the coefficient
(:’) This is a well-known theorem:

Theorem 18.1 — Binomial Theorem
For non-negative integers n,

(x+y)"=3 (r,l)x"y”_i.
i=0 \1

Proof. In the expression (x + y)", each term in the multiplied out expression has i
factors x, and n — i factors y, depending on which term was chosen within each factor
(x + y). There are ('f) ways to choose exactly i factors where x should be picked. [

The theorem gives algebraic proofs of some well-known combinatorial identities by insert-
ing, for example, x = y=1,x =land y = -1, x =2and y = 1.

18.4 The Principle of Inclusion and Exclusion

The addition principle tells us how to compute the union of disjoint sets. For the situation
that they aren’t disjoint, we have the principle of inclusion and exclusion.

The simplest case of the principle is for two sets A and B. To compute the size of
their union |A U B|, we at least need to count every element in A and every set in B, i.e.
|A| + |B|. The problem with this formula is that whenever an element is in both A and B,
we count it twice. This is easily mitigated: the number of elements in both sets equals
|A n B| (Figure 18.10). Thus, we see that |AuU B| = |A| + |[B| - |A N B|.

Similarly, we can determine a formula for the union of three sets |A U B U C|. We
begin by including every element: |A| + |B| + |C|. Again, we have included the pairwise
intersections too many times, so we remove those and get

|A|+|B|+|C|-|AnB|-|AnC|-|BnC|

361

CHAPTER 18. COMBINATORICS

7
7

AUB

Figure 18.10: The union of two sets A and B.

This time we are not done. While we have counted the elements which are in exactly one
of the sets correctly (using the first three terms), and the elements which are in exactly
two of the sets correctly (by removing the double-counting using the three latter terms),
we currently do not count the elements which are in all three sets at all! Thus, we need to
add them back, which gives us the final formula:

[AuUBUC|=|A|+|B|+|C|-|AnB|-|[AnC|-|BnC|+|AnBnC|.

Exercise 18.27. Compute the number of integers between 1 and 1000 that are divisible by 2,
3or5.

From the two examples, you can probably guess formula in the general case, which we
write in the following way:

i i<j i<j<k

Usi‘ =308 =Y0Sin S+ > ISinS; NSkl =+ (1) Sin SN0 S,
i=1

Exercise 18.28. Prove the general case of the inclusion-exclusion formula.

From this formula, we see the reason behind the naming of the principle. We include
every element, exclude the ones we double-counted, include the ones we removed too many
times, and so on. For the principle to be useful, a very important assumption must hold -
that it is hard to compute unions of but easy to compute their intersections. Whenever
this is the case, you might want to consider if the principle is applicable.

Secret Santa - secretsanta
By James Stanley. United Kingdom and Ireland Programming Contest 2016. CC BY-SA
Christmas comes sooner every year. In fact, in one oft-forgotten corner of the world, gift-giving has
already started in the form of a Secret Santa syndicate.
The 1 < N < 10" citizens of Haircombe are going to put their name into a hat. This hat will be
given a hearty shuflle, and then afterwards everybody will take turns once more in taking a name
back from the hat. The name each person receives is the name of the fellow citizen to whom they

362

https://heap.link/problem/secretsanta

18.4. THE PRINCIPLE OF INCLUSION AND EXCLUSION

will send a gift.

One concern with this strategy is that some unfortunate citizens could wind up giving gifts
to themselves. Compute the probability that this will happen to any of the citizens of Haircombe,
within an absolute or relative error of at most 107,

Solution. A given way of distributing the names to everyone can be modeled as a permu-
tation, representing who'’s present should be given to whom. We are then looking for a
permutation 7 such that 7z(i) # i for all i. This is called a derangement.

Counting derangements is a typical application of inclusion-exclusion. We will use it
on those sets of permutations where the condition is false for at least a particular index i.
If we let these sets be D;, the set of all permutations where the condition is false for any i is
Dy U Dy U---U Dy. The answer we look for is N! = Dy U -+ U Dy/|. To apply the inclusion
and exclusion formula, we must be able to compute the size of intersections of a collection
of D;. This task is simplified greatly since the intersection of k such subsets is entirely
symmetrical (it does not matter which elements violate the condition, only the amount).

For a permutation that’s the intersection of k subsets D;, there are (at least) k indices i
where 77(i) = i. Furthermore, there are N — k other elements, which can be arranged in
(N — k)! ways, so the intersection of these sets have size (N — k)!. Since we can choose
which k elements that should be fixed in (]Z) ways, the term in the formula where we
compute all k-way intersections evaluates to (IZ) (N-k)!'= % Thus, the formula can be
simplified to

NI N! NI
T

This gives us a ®(N) algorithm to compute the answer. Since we only care about the
probability of choosing a derangement, we ignore the N! numerators in the sum. Note
that while N is very large, after computing 10° terms, you’re guaranteed to be within 10~°
of the answer.

We'll take a close look on why this is true — the error approximation gives us a neat
result. Count the number of permutations that aren’t derangements, i.e.

N!(1—1+2l!—%+...).
From calculus, we know that”
. 11
e :1—1+2—!—§+...

For large N we expect that the answer should converge to NT' It will in fact always be NT'
rounded to the nearest integer since the value of the extra terms in the product equals

1 1
- +o
N+1 (N+1)(N+2)

1
N+1

<0.5.

< ‘

7If you don’t about e or this fact, don’t fret. Just ignore this for now, take a single-variable calculus course,
and then come back here and marvel.

363

CHAPTER 18. COMBINATORICS

To see why the above is true, note that each partial sum starting with the third lies strictly
between the previous two partial sums. O

A lot of combinatorial counting problems are more math than programming. So
far, we have mostly needed to add DP to some recursions, but that’s basically the only
programming specific part of any problem. In this next problem, we work through some
of the other more algorithmic aspects that can pop up when counting.

Classical Counting - classicalcounting
By Syx Pek. ICPC SG Preliminary Contest 2018. CC BY-SA.
Given integers 1 < N, M, K < 10°, compute the number of solutions to the integer equation

a+ay+---+ay=K

where 0 < a; < M. Since the answer may be huge, compute it modulo 10% + 7.

Solution. The problem looks deceptively simple. If N, M, K would just have been much
smaller, say up to 10° instead, the problem could have been solved with DP by adding one
term at a time, plus a bit of prefix sum magic (think a bit about this - it too makes for a
nice problem).

Back when we learned about Dyck paths we solved almost the same problem - the
difference being that there was no upper bound on M. This, of course, is the same situation
as for Secret Santa. We knew how to compute the number of permutations, so we tried
to get rid of the extra restriction that no element remained in place. If we try the same
approach here, we should try to see what happens if we make sets of all solutions where a
given constraint is violated (i.e. a given variable is > M). If a; > M, we can substitute it
with a new variable b; = a; — (M +1) > 0 and let the sum instead be K — (M +1). This
substitution leaves us with the problem we already know how to solve.

Of course, for inclusion-exclusion to apply, it must also be simple to solve the problem
when any given set of constraints are violated. Performing the same substitution on any [
variables simply changes the sum to be for K — /(M + 1). We can now apply the inclusion-

exclusion formula. First, we include all solutions: (N HI+K) Then, we must subtract the

N+1
. . N+1+K—(M+1
number of solutions where at least one constraint is violated. There are (A N +$ *))

such solutions, but also (III) ways to pick what constraint is violated. Next, add back the
cases where at least two constraints are violated, and so on. In total, the answer will be

N(N\(N+1+K-1(M+1)
()l)

Z) N+1

1=0

One final annoyance remains. As in Sums we're supposed to output the answer modulo
something — always a hassle when we need to perform divisions. The situation here is
much worse however - 10° +7 is not a prime. In general this is not that bad. By the Chinese

364

https://heap.link/problem/classicalcounting

18.5. INVARIANTS

Remainder Theorem, we can solve the problem modulo each prime power of the modulus
and combine answers, so this only adds an extra logarithmic factor to the time complexity.
Here however, the modulo is the product of two integers much smaller than what we need
to compute binomial coefficients for (29 and 34483). A consequence is that we have to
divide even by integers that don’t have inverses modulo our modulus. In reality the result
are of course never really divided by this, but we can’t use the method of precomputing
inverse factorials to use for divisions.

The trick is to factor out the modulus m whenever it appears in the factorials. The

k. a', where a’ is the m-free part of a.

ki

idea is that if we have an integer a, we write it as m
Multiplying and dividing such numbers are easy: two integers m*! - a; and m*? - a, have
the product mki+k: 17%2. g, . ;1. Since binomial coefficients only
involve factorials, it's enough to factor out m from each factor in the factorial and keep

track of the accumulated k values for each of them. Finally, if the binomial coefficient

- ay - a; and quotient mF

equals m* - a where k > 0, it’s simply equal to 0 in the rest of the computation. O

Problem 18.29.
Tom and Jerry tomjerry

A less obvious application of inclusion-exclusion is on the primes or prime powers of
an integer. We can derive the formula for ¢(n) in an easy way with inclusion-exclusion,
without any need for the Chinese Remainder Theorem. If an integer a is not coprime to n,
it must have some set of prime divisors in common with a. Specifically, if those primes are

q>--.>q;, there are —=

q192°+91

such integers. Applying inclusion-exclusion where we look at

which primes a have in common with »n =]'[f:1 pi’, we find that

¢(n):n—2£+zi—...

pi i< PiPj

Factoring out n and simplifying this leaves us with
1 1 1
n(l- —)(1-—)-(1-—).
(pl)(Pz) (Pk)

If you split 7 up into its prime powers and multiply them with their corresponding (1- i)
terms, you get the formula we already know.

Problem 18.30.
Winning Tickets winningtickets
18.5 Invariants

Many problems deal with processes that consist of a series of steps. During a process, we
are often interested in certain properties that never change. We call such a property an
invariant. You have already encountered invariants several times before. They are tightly

365

https://heap.link/problem/tomjerry
https://heap.link/problem/winningtickets

CHAPTER 18. COMBINATORICS

attached to greedy algorithms, and is a common tool used in proving the correctness of
various greedy algorithms. Also, the binary search algorithm maintains the invariant that
the value we are searching for must be contained in some given segment [lo, hi) of the
array at any time — a fact that basically constitutes the entire proof of correctness of binary
search. They even made an appearance as recently as Chapter 16, when we found winning
invariants in games. Hence this section should be quite familiar to you, but hopefully
you'll learn some different uses of invariants.

Coin Stacks - coinstacks
By Antti Laaksonen. Nordic Collegiate Programming Contest (NCPC) 2020. CC BY-SA.
A and B are playing a collaborative game that involves 2 < n < 50 stacks of coins, with at most 1000
coins in total. Every round of the game, they select a nonempty stack each, but they are not allowed
to choose the same stack. They then remove a coin from both the two selected stacks and then the
next round begins. The players win the game if they manage to remove all the coins. Is it possible
for them to win the game, and if it is, how should they play?

Proof. Our first invariant is also the most obvious one — parity. Since A and B always
removes two coins at once, the parity of the number of remaining coins is invariant after
making moves. Since the end state — no coins - is an even amount, there must also be an
even amount in the beginning.

This is not sufficient, however. If you consider the case (1,1, 4), you will quickly figure
out that there is no way to remove all the coins. No matter what you do, there are too many
coins in the third pile to remove them all, with the help of the other stacks. In general, if
a stack has a coins, and all the remaining stacks together have fewer than a coins, this
fact is invariant under making a move, since you can't remove more coins from the larger
stacks than the smaller.

This last condition is sufficient, however. O

Exercise 18.31. Prove that as long as no stack has more coins than the other stacks combined,
it is possible to remove all coins, and give a strategy for this.

There are always two conflicting ideas that must be balanced on this kind of problem.
On one hand, you are trying to identify sufficient conditions for possibility. This typically
means working towards an algorithm that actually solves the problem, i.e. sorts the grid.
The other part is finding the necessary conditions for when something is possible, i.e.
determining what makes that algorithm fail. In Coin Stacks, once you came up with one
of the directions, the other was fairly obvious. In the most difficult problems, you will
instead constantly struggle in knowing which of your necessary and sufficient conditions
are closest to the truth. Our next problem comes from the land of permutations, and
becomes easy only once experience tells you what invariants give you necessary conditions
that usually are sufficient as well.

366

https://heap.link/problem/coinstacks

18.5. INVARIANTS

Grid Crossings - gridcrossing
Givenisan N x M grid (3 < N, M <1000), where the integers 1 through NM are written in the
cells of the grid, one in each grid square. The grid can be transformed by taking a 2 x 2 subgrid and
swapping the integers in the two diagonals, such that the top-left and bottom-right integers switch
places, as well as the top-right and bottom-left. Can the grid be transformed so that all the integers
are sorted, when read row-by-row from left-to-right?

Solution. The invariants in this problem are again ones of parity. The first one pops up
pretty easily. In all of these permutation-type problems, a good approach is first to try
and see if it’s easy to construct an algorithm to perform arbitrary transformations, such
as finding a sequence of operations that move only a single element one step. Another
common approach is trying to correct the grid row-by-row. It's sometimes easy to move
elements arbitrarily upwards in the grid to a row, while not disrupting any element further
up in that row, often reducing the problem to solving the general problem only for a few
rows in the bottom.

If you try to design a way to move e.g. 1 into the right place from an arbitrary position,
an obstacle quickly pops up. Integers can only move diagonally in the grid, so they are
constrained to either squares with an odd or an even coordinate sum. You can think about
this as the grid being colored in a black and white chessboard pattern, and integers only
moving between same colored squares. The puzzle can be solved only when the integers
that are on the white squares must also have their target positions on their white squares.

Is this sufficient, then? Nope, but it’s not obvious how to know except by getting Wrong
Answer on an online judge. If youd brute force count the number of 3 x 3 grid that can be
sorted (a good idea in this kind of problems!), youd find that there are exactly 1440 such
grids. In total, there are 5! - 4! = 2880 possible grids (permute all integers on the black
and the white squares), i.e. exactly half are reachable. No matter what you do to one of
the other 1440 grids, you'll notice that there is always one pair of out-of-order integers on
either the white or the black squares.

To understand why, we bring out some additional combinatorial theory, namely that
of the parity of a permutation. The basic idea is the following. Take a permutation and
repeatedly swap the positions of two elements an arbitrary even number of times. Not
all permutations can be reached through this process. For example (1, 2) can never turn
into (2,1), and (1,2, 3) can never turn into (3,2,1). It is these two classes we are after:
the permutations that can or can’t be obtained. To characterize them, we use one more
concept.

Definition 18.6 — Inversions and parity of a permutation
In a permutation 7, we call a pair of indices i < j an inversion if (i) > 7(j), i.e. the
corresponding elements are out-of-order in relation to each other.

The parity of a permutation is the parity of the number of of inversions in the

367

https://heap.link/problem/gridcrossing

CHAPTER 18. COMBINATORICS

permutation. We call the classes of permutations odd and even permutations.

To tie this tangent together, we need a hard to come up with fact: the parity of a permutation
changes when swapping any two elements.

Exercise 18.32. Prove that the parity of a permutation changes when two elements are
swapped.

Exercise 18.33. Give a simple ®(N log N) time algorithm to compute the the number of
inversions of a permutation (and thus also the parity of the permutation).

This concept allows us to formulate a new necessary condition for when a grid can be
sorted. The integers on the black and white squares can be considered as two permutations
of their sorted positions. Note now that each move performs exactly one swap on both
of those permutations. This means that their parity is changed simultaneously each time.
The end state of both permutations is the identity permutation which is always even, so
they must have the same parity at every point during the process — more specifically, in
the beginning. This explains why only half of the 3 x 3 grids can be solved. In the other
half, the parity of the two permutations don’t match.

If you think that this must surely be a sufficient condition, youd be absolutely right.
Proving this, however, is left as an exercise. O

Exercise 18.34. Prove that if all integers in the grid are on a square of the same color as
its target square, and the permutation formed by all the integers on the white and black
squares respectively, the grid can be sorted.

Exercise 18.35. Prove that a permutation is even if and only if it has an even number of
even-length cycles in its cycle decomposition. Give a linear-time algorithm to compute
the parity of a permutation.

Exercise 18.36. Prove that there are as many odd permutations as there are even permuta-
tions when the permutation has at least 2 elements.

Problem 18.37.

Bread Sorting breadsorting
Grid Transpositions gridtranspositions
Monovariants

Another similar tool is the monovariant. While invariants are used to prove that some
property doesn’t change during a process, a monovariant instead aims to show that some
property of the process always changes in the same direction. As an example, consider the
Euclidean algorithm for computing the GCD. It is a step-by-step process on non-negative
integers a, b, that terminates when once is zero. The proof that it terminates essentially
amounts to showing that the value a + b strictly decreases with every move operation

368

https://heap.link/problem/breadsorting
https://heap.link/problem/gridtranspositions

18.5. INVARIANTS

(a,b) - (b,amodb). Since a + b is bounded downwards by 0, this procedure could not
continue forever, so it must at some point terminate.

This idea can be generalized to many situations where we can assign some kind of
value p(v) to the state v of an iterative process. We try to choose p such that it always
strictly increases or decreases after each move. If we can prove that p only assumes values
from a finite set (in the GCD case, integers between 0 and a + b), it follows that the process
terminates, or else p, taking only a finite number of different values, must take some value
twice. That contradicts p’s monotonicity.

Majority Graph Bipartitioning
Given is a graph G with at most 1 < V <100 vertices. Find a bipartition of this graph into parts A
and B, such that every vertex v has at most M neighbors in the same part as v itself.

Solution. A first approach might be to attempt something greedy. For example, one might
try to construct a greedy algorithm based on the degrees of the vertices, or something like
that. Unfortunately, the problem does not have enough structure for any simple greedy
idea to work.

Instead, we will attempt to use the most common monovariant attack. Roughly, the
process follows these steps:

1. Start with any arbitrary state s.

2. Look for some kind of modification to this state, which is possible if and only if
the state is not admissible. In this problem, admissible means that no vertex is
in the same part as a strict majority of its neighbors. Generally, the goal of this
modification is to “fix” whatever makes the state inadmissible.

3. Prove that there is some value p(s) that must decrease/increase whenever such a
modification is done.

4. Prove that this value cannot decrease/increase infinitely many times.

Using these four rules, we prove the existence of an admissible state. If (and only if) s
is not admissible, by step 2 we can perform some specified action on it, which by step 3
will decrease the value p(s). Hence, by performing finitely many such actions, we must
(by rule 4) reach a state where no such action is possible. This happens only when the
state is admissible, meaning such a state must exist. The process might seem a bit abstract,
but will become clear once we walk you through the bipartitioning step.

Our algorithm works as follows. First, consider any invalid bipartition of the graph
such as in Figure 18.11. Since the bipartition is invalid, there must exist a vertex v which
has more than M vertices in the same part as v itself. Move v to the other side of the
partition. See Figure 18.12 for the result of the this process.

One question remains — why does this move guarantee a finite process? We now have

a general framework to prove this, suggesting that we should look for a value function

369

CHAPTER 18. COMBINATORICS

Figure 18.41: An invalid bipartitioning, where vertices B, D, G break the condition.

Figure 18.42: The results after of the algorithm, which brings the graph to a valid state.

p(s) which is either strictly increasing or decreasing as we move a vertex to the other side.
By studying the algorithm in action in Figure 18.12 we might notice that more and more
edges tend to go between the two parts. This number always increased in our example. As
we shall see, this is true no matter which vertex v is moved.

If a vertex v has a neighbors in the same part, b neighbors in the other part, and
violates the neighbor condition, this means that a > b. When we move v to the other part,
the b edges from v to its neighbors in the other part is no longer between the two parts,
while the a edges to its neighbors in the same part are. The number of edges between the
parts then changes by a — b > 0, making this a good choice for the value function. Since

this is an integer function with the obvious upper bound of w, we complete step 4 of
our proof technique and conclude that the final state must be admissible. We also got a

O(N?) upper bound on the number of steps needed. O

In mathematical problem solving, monovariants are usually used to prove that an
admissible state exists. However, monovariant problems are really algorithmic problems
in disguise since they tend to provide an algorithm for constructing an admissible state.

370

18.5. INVARIANTS

Water Pistols
N girls and N boys (N < 200) stand on a field, with no three children on the same line. Each girl
is equipped with a water pistol, and wants to pick a boy to fire at. While the boys probably won’t
appreciate being drenched in water, at least the girls are fair - they will only fire at a single boy each.
Sometimes, it may be the case that two girls fire on the boys in a way that makes the water from their
pistols cross. If this happens, the beams collide mid-air and cancel each other out, never hitting
their targets.

*—O

Figure 18.13: An assignment where some beams intersect (left), and an assignment where no beams
intersect (right).

Help the girls choose which boys to fire at, in such a way that no two girls fire at the same boy,
and the water fired by two girls will not cross.

Solution. After the last problem, the solution should not come as a surprise. Start by
arbitrarily pairing up the boys with the girls. While the pairing has two girls whose water
beams cross, swap their targets.

Unless you have great geometrical intuition, it may be hard to figure out an appropriate
value function. A naive attempt is to count how many pairs of water beams cross. This
doesn’t necessarily decrease after a move - it might even increase.

Figure 18.14: Swapping the targets of two intersecting beams.

Instead, let us look closer at what happens when we switch the targets of two girls. In
Figure 18.14, we see the before and after of such an example, as well as the two situations

371

CHAPTER 18. COMBINATORICS

interposed. If we consider the sum of the two lengths of the water beams before the swap
C + E + D + F versus the lengths after the swap A + B, we see that the latter must be less
than the first. Indeed, we have A < C + D and B < E + F by the triangle inequality, which
by summing the two inequalities gives the desired result.

As students of algorithmics, we can make the additional note that, if we construct the
complete bipartite graph of the girls and boys with edges between them weighted with
their distance, the bipartite matching with smallest total weight is a valid assignment. If
this was not the case, we would be able to swap two targets and decrease the weight of the
matching, contradicting the assumption that it was minimum-eight. This matching can
be efficiently computed with min-cost max-flow. O

The last part shows another way to work with monovariants, by directly looking at the
state that minimizes the value function. Since there’s a transition to another state with a
lower value if the state is inadmissible, it must be that the state is actually admissible (or
else it wasn’'t of minimal value). This should remind you of the extreme value principle

from Chapter 10 on greedy algorithms.

Problem 18.38.
Army Division
Non-Negative Matrix Sums

ADDITIONAL EXERCISES

Problem 18.39.

Dejavu

Digit Division

Dice Betting

Neighborhood Watch
Hamming Ellipses

Perica

Gwen’s Gift

Permutation Descent Count

The Sock Pile
Counting Heaps

Lucky Draw

Birthday Paradox

Genijalac

Dance Reconstruction (hard)
Code Permutations

Yule

Cycles (Hard)

King’s Colors

372

armydivision
nonnegmatrixsums

dejavu

digitdivision
dicebetting
neighborhoodwatch
hammingellipses
perica

gwensgift
permutationdescent
thesockpile
countingheaps
luckydraw
birthdayparadox
genijalac
dancehard
codepermutations
yule

cycleshard
kingscolors

https://heap.link/problem/armydivision
https://heap.link/problem/nonnegmatrixsums
https://heap.link/problem/dejavu
https://heap.link/problem/digitdivision
https://heap.link/problem/dicebetting
https://heap.link/problem/neighborhoodwatch
https://heap.link/problem/hammingellipses
https://heap.link/problem/perica
https://heap.link/problem/gwensgift
https://heap.link/problem/permutationdescent
https://heap.link/problem/thesockpile
https://heap.link/problem/countingheaps
https://heap.link/problem/luckydraw
https://heap.link/problem/birthdayparadox
https://heap.link/problem/genijalac
https://heap.link/problem/dancehard
https://heap.link/problem/codepermutations
https://heap.link/problem/yule
https://heap.link/problem/cycleshard
https://heap.link/problem/kingscolors

18.5. INVARIANTS

Boss Battle bossbattle
Domino Tiling dominotiling
NOTES

While a long chapter, this was just a short foray into the huge area of combinatorics. For a
wider survey of many combinatorial topics, we can recommend A Course in Combinatorics
[54] by van Lint et al. An amazing collection of problems of a wide variety is Lészl6
Lovasz Combinatorial Problems and Exercises [30] which teaches a large number of useful
combinatorial techniques purely through posing problems.

To go deeper into the area of enumerative combinatorics, Stanley’s two-volume series
Enumerative Combinatorics [49] is a great resource. To focus more on the computational
aspects, it is possible that Donald Knuth wrote everything there is to say in the relevant
volume of The Art of Computer Programming [28].

If you at some point decide that computer science isn’t for you, there are plenty of purely
mathematical ways to count complex objects too. Aside from Analytic Combinatorics
[16] mentioned earlier, Wilf’s generatingfunctionology [58] is a good reference works on
analyzing counting problems using analytical methods®.

81f you thought the sudden appearance of e™! in combinatorics was the coolest thing you've seen this
millennia, wait until the trigonometry appears.

373

https://heap.link/problem/bossbattle
https://heap.link/problem/dominotiling

CHAPTER 18. COMBINATORICS

374

CHAPTER 19

Strings

In computing, text is one of the most prevalent data types that programs process. Ev-
erything from searching for files on your computer to quickly routing Internet packages
to their right destination involves text processing in some sense. Therefore, it should
not come as a surprise that a great effort has been made in computer science research to
develop efficient algorithms and data structures for common text tasks.

For simplicity, we adopt the mathematical definition of a string in this chapter, i.e, a
string is a sequence of characters chosen from a given, finite alphabet. When implementing
string algorithms on a computer, we assume that any alphabet of size N is represented by
the set of integers 0 through N — 1.

Conversely, sequences of bounded non-negative are strings. In particular, a single
integer can be viewed as a string, since its representation in some base b is a string over
the alphabet {0,1, ..., b — 1}. In this chapter, we'll use this fact to apply string algorithms
and data structures outside of traditional text processing use cases.

19.1 Tries

How does one sort strings? The straightforward method is to use your favorite comparison-
based algorithm. Determining the time complexity of this is less straightfoward, since it
depends on the length of your strings and how long their pairwise common prefixes are.
For a simplified model, assume there are N strings, each of length L, all of which are almost
equal so that any comparison takes ® (L) time. Then this sorting takes ® (NLlog N) time
in the worst case.

If the total input size is N and there are The complexity of this is bounded by the
maximum string length

Well start by looking at three different ways of representing Representing a set of
strings can be done in many ways. For example, a sorted list, as a sorted set using a
balanced tree, or a hash map. The first two of these are

Representing a set of strings can be done in many ways. For example, a sorted list, as a
sorted set using a balanced tree, or a hash map. The first two of these are

The trie (also called a prefix tree) is the most common string data structure. It’s used
to store a set of words in the form of a rooted tree, where every prefix of a word is a vertex.
Edges are added from one prefix P to all other prefixes Pc where c is a single character.
If two words share a prefix, it only appears once as a vertex. The root of the tree is the

375

1

Qv R oW

CHAPTER 19. STRINGS

empty string, which all words share as a prefix. The trie is very useful when we want to
associate some information with prefixes of strings and quickly get the information from
neighboring strings.

Tries are normally implemented as trees, with the vertex for the prefix P containing a
map children mapping a character c to the child prefixes Pc. Depending on the require-
ments of the problem that the trie is used for, these vertices may also be augmented with
additional data. For example it’s common for a prefix P to store a count of how many
inserted strings were exactly equal to P. Inserting a word into a trie with this count can
look like this:

: procedure INSERTWORD(trie node T, string W, int idx)

if idx = |W/| then
increase T.count by 1

return

child < T.children[W[idx]]
InsertWord(child, W, idx + 1)

This procedure is linear time in the length of the string W being inserted.
Many problems essentially can be solved by very simple usage of a trie, such as the
following old IOI problem.

Type Printer
By Richard Peng. International Olympiad in Informatics 2008.
You need to print N < 25000 distinct words on a movable type printer, each with up to 20 letters
a-z. Movable type printers are those old printers that require you to place small metal pieces (each
containing a letter) in order to form words. A piece of paper is then pressed against them to print
the word. The printer you have allows you to do any of the following operations:

o Add a letter to the end of the word currently in the printer.

o Remove the last letter from the end of the word currently in the printer. You are only allowed
to do this if there is at least one letter currently in the printer.

o Print the word currently in the printer.

Initially, the printer is empty; it contains no metal pieces with letters. At the end of printing, you
are allowed to leave some letters in the printer. Also, you are allowed to print the words in any order
you like. As every operation requires time, you want to minimize the total number of operations.
Find a sequence of operations that prints all the words using the minimum number of operations
needed.

Solution. Let us start by solving a variation of the problem, where we aren’t allowed to
leave letters in the printer at the end. Are there any actions that never make sense? For
example, what sequences of letters will ever appear in the type writer during an optimal
sequence of operations? Clearly we should never have a sequence that is not a prefix of a
word we wish to type. Conversely, every prefix of a word we wish to print must at some

376

® N v k

10:

11:

12:

19.1. TRIES

point appear on the type writer, or there would be a word we could never print. Therefore,
the partial words on the type printer are exactly the prefixes of the words to be printed,
strongly hinting at a trie-based solution.

The edges of the trie containing all the input words has a nice property. The type writer
can only add or remove a single letter at the end of the word, and this corresponds to
moving along a single edge in the trie - to the parent when removing a letter, or to a child
when adding one. The goal is then to construct the shortest possible tour starting at the
root of the trie and passing through all the vertices. A tour of this kind must pass through
each edge at least twice: the first time when visiting a vertex, and then again when moving
back to the root. This is also what a depth-first search of a tree does, so the DFS tour of
the trie represent an optimal sequence of operations.

The problem is subtly different once we are allowed to leave some letters in the printer
at the end. The only difference for sequence of operations is that we are allowed to skip
an arbitrary number of removals at the end of the sequence. If the last word printed is
S, that difference is |S| removals. An optimal solution should therefore print the longest
word last, in order to skip as many removal operations as possible. The DFS traversal can
be made to visit the longest word in the input last by always traversing into the subtree
containing it last for each vertex.

The trie only needs to store whether a prefix represents the word or not. Additionally,
we must perform a DFS on it.

: procedure DFS(T, longest, i)

if T.count > 0 then
print the current word
for child ¢ » T' of T do
if longest = nil or ¢ # longest[i] then > don’t DFS into the non-longest word
add the letter ¢ to the printer
DES(T", nil, -1)
remove the last letter from the printer
if longest # nil then D> if were on the path to the longest word, DFS into it last
¢ < longest[i]
add the letter ¢ to the printer
DFS(T.children[c], longest, i +1) O

Problem19.1. BingitIn bing

Generally, the uses of tries are not this simple, where we only need to construct the
trie and fetch the answer through a simple traversal. We often need to augment tries with
additional information about the prefixes we insert. This is when tries start to become really
powerful. The next problem is very difficult and requires several new useful techniques,
including a commmon type of trie augmentation.

377

https://heap.link/problem/bing

CHAPTER 19. STRINGS

Klasika - klasika
By Ivan Paljak. Croatian Open Competition in Informatics 2019-2020, contest # 4.
In the beginning there was a vertex denoted as 1 and it represented the root of a tree. Your task is to
support Q < 200000 queries of the form:

o Add x y — add a new vertex to the tree as a child of vertex x. The newly added vertex and
vertex x are connected with an edge of weight 0 < y < 2°°. Newly added vertices are denoted
by 2,3, 4, ... in the order that they are added.

o Query a b - find the highest value of a path starting at vertex a and ending in some vertex
from the subtree of vertex b (which itself is considered to be in its own subtree). The value of
a path is the exclusive or” (XOR) of the weights of all edges on the path.

“The exclusive or @ for two binary digits is definedas0® 0=1®1=0and 0 &1 =16 0 = 1. For integers a
and b, a @ b is computed by performing the operation for each pair of bits on the same position.

Solution. Our strategy for solving the problem will be to start with a much simpler version
that we then build upon to the full problem. The easiest version that still makes sense
would be where the entire graph is given beforehand, and queries are for paths from a to
any vertex in the tree (i.e. b = 1).

To solve this easier problem, we need to know three basic facts about the XOR: it’s
associative, ie. a® (b @ c) = (a @ b) ® ¢, it's commutative, i.e. a ® b = b ® a and every
element is its own inverse, i.e. a ® a = 0. A consequence of this is that a path from vertex
a to b can be reduced to two paths from the root to a and to b, in a very similar way to
how LCA can be used to compute arbitrary distances in a tree.

Exercise 19.2. Let V(a,b) be the value of the path from a to b. Prove that V(a,b) =
V(root,a) ® V(root, b).

The queries are then, given an integer x, find the vertex v that maximizes x ® V (root, v)
(where x = V(root, a)). This allowed us to remove the vertex a from the equation other
than in the form of the value x. To remove the underlying graph completely from the
problem, let S be the set of all V (root,v), so that we're trying to find the maximum of
x @ y with y € S. The set S can be computed with a single DFS from the root.

We've now simplified the problem enough to attack it directly. Since the XOR operation
operates on a bit by bit basis, that’s also how most XOR problems are solved. First, note
that all values can have only the lowest 31 bits set. If possible we want x & y to have the
highest possible bit (2°°) set, since that maximizes the value no matter what the lower bits
are. This happens when exactly one of x and y has the 2°° bit as 1. The set of possibly y
can thus be partitioned into two subsets: those where x @ y has the bit set, A, and those
where it doesn’t, B. If A is non-empty, we know that the right y is in A, otherwise it’s in
B. In either case the top bit is now fixed, so we can repeat the procedure focusing only
maximizing the top 30 bits instead, and repeat this until there’s only a single y left. This
is where the trie enters the problem. We have two types of operations. After fixing some

378

https://heap.link/problem/klasika

1

19.2. STRING MATCHING

prefix p of y, we want to know how many numbers in S have that prefixes p0 and pl, as
well as appending one bit at a time to that prefix. A trie efficiently supports both of those
operations if we interpret the binary representation of each number as a string. For free,
we've also gained the possibility of solving the problem where vertices are added since the
trie can be updated at any time.

What remains is supporting queries with b # 1, i.e. where S consists of only values
V (root,v) where v is in a specific subtree. O

The problem required several separate steps such as, reducing the problem to only
paths from the root, using a trie to maximize the XOR, pre-processing all the queries to
perform some precomputation, and using the Euler tour to deal with queries on subtrees.
Still, the problem could have been solved quickly in a contest by a seasoned competitor
who would have seen several of these ideas in other problems. Hopefully, this drives home
the point that solving many problems is the best way of practicing problem solving. Many
problems become nothing more than the combination of things you have seen before.

19.2 String Matching

A common problem on strings — both in problem solving and real life - is that of searching.
Not only do we need to check whether e.g. a set of strings contain some particular string,
but also if one string contains another one as a substring. This operation is ubiquitous;
operating systems allow us to search the contents of our files, and our text editors, web
browsers and email clients all support substring searching in documents. It should come
as no surprise that string matching is part of many string problems.

String Matching - stringmatching
Find all occurrences of the pattern P as a substring in the string W.

We can solve this problem naively in O(|W]| - |P|). If we assume that an occurrence of
P starts at position i in W, we can compare the substring W[i...i + |[P| = 1] to P in O(|P])
time by looping through both strings, one character at a time:

procedure STRINGMATCHING(pattern P, string W)
answer < new vector
for outer: i from 0 to |W| — |P| do
for j from 0 to |P| — 1do
if P[j]! = W[i + j] then
start next iteration of outer
answer.append(i)

return answer

Intuitively, we should be able to do better. With the naive matching, our problem is
basically that we can perform long stretches of partial matches for every position. Searching

379

https://heap.link/problem/stringmatching

N

 ® N 2 ke

CHAPTER 19. STRINGS

for the string a3 in the string a” takes O(n?) time, since each of the 3 positions where
the pattern can appear requires us to look ahead for 4 characters to realize we made a
match. On the other hand, if we manage to find a long partial match of length [starting at
i, we know what the next [letters of W are — they are the [/ first letters of P. With some
cleverness, we should be able to exploit this fact, hopefully avoiding the need to scan them
again when we attempt to find a match starting at i + 1.

For example, assume we have P = bananarama. Then, if we have performed a partial
match of banana at some position i in W but the next character is a mismatch (i.e., it
is not an r), we know that no match can begin at the next 5 characters. Since we have
matched banana at i, we have that W[i + 1...i + 5] = anana, which does not contain a b.

As a more interesting example, take P = abbaabborre. This pattern has the property
that the partial match of abbaabb actually contains as a prefix of P itself as a suffix, namely
abb. This means that if at some position i get this partial match but the next character is a
mismatch, we can not immediately skip the next 6 characters. It is possible that the entire
string could have been abbaabbaabborre. Then, an actual match (starting at the fifth
character) overlaps our partial match. It seems that if we find a partial match of length 7
(i.e. abbaabb), we can only skip the first 4 characters of the partial match.

For every possible partial match of the pattern P, how many characters are we able to
skip if we fail a k-length partial match? If we could precompute such a table, we should be
able to perform matching in linear time, since we would only have to investigate every
character of W once. Assume the next possible match is / letters forward. Then the new
partial match must consist of the last k — [letters of the partial match, i.e. P[I...k-1].
But a partial match is just a prefix of P, so we must have P[I...k—-1]=P[0...]1-1].In
other word, for every given k, we must find the longest suffix of P[0...K —1] that is also
a prefix of P (besides P[0. .. k — 1] itself, of course).

We can compute these suffixes rather easily in O(n?). For each possible position for
the next possible match [, we perform a string matching to find all occurrences of prefixes
of P within P:

: procedure LONGESTSUFFIXES(pattern P)

T < new int[|P| + 1]
for I from1to|P|-1do
matchLen < 0
while ! + matchLen < |W| do
if P[1]! = P[matchLen] then
break
matchLen < matchLen + 1
T[I + matchLen] = matchLen

return T

A string such as P = bananarama, where no partial match could possibly contain a

380

1:

[

L ® N 2w R @

10:

1:

2:

19.2. STRING MATCHING

new potential match, this table would simply be:

P‘bananarama
T\oooooooooo

When P = abbaabborre, the table instead becomes:

P‘abbaabborre
T|00 0 1 1 23 00 00

With this precomputation, we can now perform matching in linear time. The matching
is similar to the naive matching, except we can now use this precomputed table to determine
whether there is a new possible match somewhere within the partial match.

procedure STRINGMATCHING(pattern P, text W)
matches < new vector
T <« LongestSuffixes(P)
pos < 0,match < 0
while pos + match < |W| do
if match < |P| and W{pos + match] = P[match] then
match < match + 1
else if match = 0 then
pos < pos +1
else
pos < pos + match — T[match)]
match < T[match)]
if match = |P| then
matches.append(match)

return matches

In each iteration of the loop, we see that either match is increased by one, or match is
decreased by match — T[match] and pos is increased by the same amount. Since match is
bounded by P and pos is bounded by |W/, this can happen at most |W| + |P| times. Each
iteration takes constant time, meaning our matching is @ (|W/| + |P|) time.

While this is certainly better than the naive string matching, it is not particularly
helpful when |P| = ®(|W|) since we need an O(|P|) preprocessing. The solution lies in
how we computed the table of suffix matches, or rather, the fact that it is entirely based on
string matching itself. We just learned how to use this table to perform string matching in
linear time. Maybe we can use this table to extend itself and get the precomputation down
to O(|P|)? After all, we are looking for occurrences of prefixes of P in P itself, which is
exactly what string matching does. If we modify the string matching algorithm for this
purpose, we get what we need:

procedure LONGESTSUFFIXES(pattern P)
T <« new int[|P| +1]

381

CHAPTER 19. STRINGS

pos < 1,match < 0
while pos + match < |P| do
if P[pos + match] = P[match] then
T[pos + match] < match +1
match < match + 1
else if match = 0 then
pos < pos +1
else
pos < pos + match — T[match]
match < T[match)]
if match = |P| then
matches.append(match)

return T

This string matching algorithm is called the Knuth-Morris-Pratt (KMP) algorithm.
Using the same analysis as for the improved string matching, this precomputation is
instead @(|P]). The resulting string matching then takes ®(|P| + |W]).

Competitive Tip

Most programming languages have functions to find occurrences of a certain string in another.
However, they mostly use the naive O(|W||P|) procedure. Be aware of this and code your own
string matching if you need it to perform in linear time.

Clock Pictures
Nordic Collegiate Programming Contest 2014

You have two pictures of an unusual kind of clock. The clock has 2 < n < 200 000 hands, each having
the same length and no kind of marking whatsoever. Also, the numbers on the clock are so faded
that you can’t even tell anymore what direction is up in the picture. So the only thing that you see
on the pictures, are n shades of the n hands, and nothing else.

Youd like to know if both images might have been taken at exactly the same time of the day,
possibly with the camera rotated at different angles.

Given the description of the two images, determine whether it is possible that these two pictures
could be showing the same clock displaying the same time. An description of an image consists of a
set of n angles, given in thousandths of a degree.

19.3 Hashing

Hashing is a concept most familiar from the hash table data structure. The idea behind
the structure is to compress a set S of elements from a large set to a smaller set, in order to
quickly determine memberships of S by having a direct indexing of the smaller set into
an array (which has ©(1) look-ups). In this section, we are going to look at hashing in a

382

19.3. HASHING

different light, as a way of speeding up comparisons of data. When comparing two pieces
of data a and b of size n for equality, we need to use @(#) time in the worst case since
every bit of data must be compared. This is fine if we perform only a single comparison. If
we instead wish to compare many pieces of data, this becomes an unnecessary bottleneck.
We can use the same kind of hashing as with hash tables, by defining a “random” function
H(x) : S - Z, such that x # y implies H(x) # H(y) with high probability. Such a
function allows us to perform comparisons in @(1) time (with linear preprocessing),
by reducing the comparison of arbitrary data to small integers (we often choose n to
be on the order of 2°% or 24 to get constant-time comparisons). The trade-off lies in
correctness, which is compromised in the unfortunate event that we perform a comparison
H(x) = H(y) even though x # .

FriendBook
By Arash Rouhani. Swedish Olympiad in Informatics 2011, Finals.
FriendBook is a web site where you can chat with your friends. For a long time, they have used a
simple “friend system” where each user has a list of which other users are their “friends”. Recently, a
somewhat controversial feature was added, namely a list of your “enemies”. While the friend relation
will always be mutual (two users must confirm that they wish to be friends), enmity is sometimes
one-way — a person A can have an enemy B, who - by plain animosity — refuse to accept A as an
enemy.
Being a poet, you have lately been pondering the following quote.

A friend is someone who dislike the same people as yourself.

Given a FriendBook network with 2 < N < 5000 friends, you wonder to what extent this quote
applies. More specifically, for how many pairs of users is it the case that they are either friends with
identical enemy lists, or are not friends and does not have identical enemy lists?

Input

The network is described using N lines, each with N characters. N lines follow, each containing n
characters. The c’th character on the 7’th line S, species what relation person r has to person c.
This character is either

Vv - in case they are friends.

F — if 7 thinks of ¢ as an enemy.

. — r has a neutral attitude towards c.

Sii is always ., and S;j is v if and only if S;; is v.

This problem lends itself very well to hashing. It is clear that the problem is about
comparisons - indeed, we are to count the number of pairs of persons who are either
friends and have equal enemy lists or are not friends and have unequal enemy lists. The
first step is to extract the enemy lists E; for each person i. This will be a N-length string,
where the j’th character is F if person j is an enemy of person i, and . otherwise. Basically,
we remove all the friendships from the input matrix. Performing naive comparisons on

383

CHAPTER 19. STRINGS

these strings would only give us a O(N?) time bound, since we need to perform N>
comparisons of enemy lists of length N bounded only by O(N) in the worst case. Here,
hashing comes to our aid. By instead computing h; = H(E;) for every i, comparisons of
enemy lists instead become comparisons of the integers h; — a ®(1) operation - thereby
reducing the complexity to ®(N?).

Alternative solutions exist. For example, we could instead have sorted all the enemy
lists, after which we can perform a partitioning of the lists by equality in ®(N?) time.
However, this takes O(N?log N) time with naive sorting (or O(N?) if radix sort is used,
but it is more complex) and is definitely more complicated to code than the hashing
approach. Another option is to insert all the strings into a trie, simplifying this partitioning
and avoiding the sorting altogether. This is better, but still more complex. While it would
have the same complexity, the constant factor would be significantly worse compared to
the hashing approach.

This is a common theme among string problems. While most string problems can be
solved without hashes, solutions using them tend to be simpler.

The true power of string hashing is not this basic preprocessing step where we can only
compare two strings. Another hashing technique allows us to compare arbitrary substring
of a string in constant time.

Definition 19.1 — Polynomial Hash
Let S = 5155 ... s, be a string. The polynomial hash H(S) of S is the number

H(S) = (s1p" "+ 52p" 2 + -+ 5,21p + 54) mod M

As usual when dealing with strings in arithmetic expressions, we take s; to be some
numeric representation of the character, like its ASCII encoding. In C++, char is actually
a numeric type and is thus usable as a number when using polynomial hashes.

Polynomial hashes have many useful properties.

Theorem 19.1 — Properties of the Polynomial Hash
If S =5;1...5, is a string and c is a single character, we have that
1. H(S|lc) = (pH(S) + H(c)) mod M
2. H(c||S) = (H(S) + H(¢)p") mod M
3. H(sy...s,) = (H(S) - H(s1)p" ") mod M
4. H(sy...s,1) = (H(S) - H(s,))p ' mod M
5. H(s1sp41---Sr—28r-1) = (H(s1...sg-1) = H(s1 = Sp-1) p* %) mod M

Exercise 19.3. Prove the properties of Theorem 19.1

Exercise 19.4. How can we compute the hash of §||T in O(1) given the hashes of the strings

384

19.3. HASHING

Sand T?

Properties 1-4 alone allow us to append and remove characters from the beginning and
end of a hash in constant time. We refer to this property as polynomial hashes being rolling.
This property allows us to String Matching problem with a single pattern (Section 19.2)
with the same complexity as KMP, by computing the hash of the pattern P and then rolling
a |P|-length hash through the string we are searching in. This algorithm is called the
Rabin-Karp algorithm.

Property 5 allows us to compute the hash of any substring of a string in constant time,
provided we have computed the hashes H(S;), H(s152), ..., H(s1s2...s,) first. Naively
this computation would be ®(n?), but property 1 allows us to compute them recursively,
resulting in ®(n) precomputation.

Radio Transmission
Baltic Olympiad in Informatics 2009
Given is a string S of length at most 10°. Find the shortest string L, such that § is a substring of the
infinite string T = ... LLLLL.... If there are several possible L of the shortest length, output any of
them.

Assume that L has a particular length [. Then, since T is periodic with length /, S
must be too (since it is a substring of T'). Conversely, if S is periodic with some length I,
can can choose as L = 5;5; ... s;. Thus, we are actually seeking the smallest [such that S is
periodic with length I. The constraints this puts on S are simple. We must have that

SI=S141 = 82041 = - -+

$2 =842 = 82142 = -+

S| =81 =831 =...

Using this insight as-is gives us a O(|S|?) algorithm, where we first fix [and then verify if
those constraints hold. The idea is sound, but a bit slow. Again, the problematic step is that
we need to perform many slow, linear-time comparisons. If we look at what comparisons
we actually perform, we are actually comparing two substrings of S with each other:

S182 -+« Sp—+1 = S[+15142 -+ - Sn

Thus we are actually performing a linear number of substring comparisons, which we now
know are actually constant-time operations after linear preprocessing. Hashes thus gave
us a O@(N) algorithm.

385

o 0N AWV R W N e

-
[}

CHAPTER 19. STRINGS

Radio Transmission
H 1h = o, Rh = 0;
int 1 = o;
for (int i = 1; i <= n; ++1) {
Lh = (Lh = p + S[i]) % M;
Rh = (S[n - 1 + 1] » p™(i - 1) + Rh) % M;
if (Lh == Rh) {
1= 1i;
}
}

cout << n - 1 << endl;
|

Polynomial hashes are also a powerful tool to compare something against a large
number of strings using hash sets. For example, we could actually use hashing as a
replacement for Aho-Corasick. However, we would have to perform one pass of rolling
hash for each different pattern length. If the string we are searching in is N and the sum of
pattern lengths are P, this is not O(N + P) however. If we have k different pattern lengths,
their sum must be at least 1+ 2 +--- + k = ©(k?), so k = O(\/P).

Substring Range Matching
Petrozavodsk Winter Training Camp 2015
Given N < 50000 strings s1, 52, . .., sy and a list of Q < 100000 queries of the form L, R, S, answer
for each such query the number of strings in sz, sz41, . . ., Sg which contain S as a substring.
The sum of |S| over all queries is at most 20 000. The lengths |si| + [s2| + -+ + |sn] is at most
50000.

Let us focus on how to solve the problem where every query has the same string S. In
this case, we would first find which of the strings s; that S is contained in using polynomial
hashing. To respond to a query, could for example keep a set of all the i where s; was an
occurrence together with how many smaller s; contained the string (i.e. some kind of
partial sum). This would allow us to respond to a query where L = 1 using a upper bound
in our set. Solving queries of the form [1, R] is equivalent to general intervals however,
since the interval [L, R] is simply the interval [1, R] with the interval [1, L — 1] removed.
This procedure would take @ (3 |s;|) time to find the occurrences of S, and O(Qlog N)
time to answer the queries.

When extending this to the general case where our queries may contain different S, we
do the same thing but instead find the occurrences of all the patterns of the same length
p simultaneously. This can be done by keeping the hashes of those patterns in a map, to
allow for fast look-up of our rolling hash. Since there can only be at most /20000 ~ 140
different pattern lengths, we must perform about 140 - 50000 » 7000 000 set look-ups,
which is feasible.

386

© N AW AW N e

38

19.3. HASHING

Substring Range Matching

int countInterval(int upTo, const set<pii>& s) {
auto it = s.lower_bound(pii(upTo + 1, 0));
if (it == s.begin()) return o;
return (--it)->second;

-~

int main() {
int N, Q;
cin >> N >> Q;
vector<string> s(N);
rep(i,o,N) cin >> s[il];

map<int, set<string>> patterns;

vector<tuple<int, int, string>> queries;

rep(i,o,Q) {
int L, R;
string S;

cin >> L >> R >> S;
queries.emplace_back(L, R, S);
patterns[sz(s)].insert(S);

}

map<H, set<pii>> hits;
trav(pat, patterns) {
rep(i,o,N) {
vector<H> hashes = rollHash(s[i], pat.first);
trav(h, hashes)
if (pat.second.count(h))
hits[h].emplace(i, sz(hits[h]) + 1);
}
}

trav(query, queries) {
H h = polyHash(get<2>(query));
cout << countInterval(R, hits[h]) - countInterval(L-1, hits[h]) << endl;
I3
I3

Exercise 19.5. Hashing can be used to determine which of two substrings are the lexico-
graphically smallest one. How? Extend this result to a simple @(nlog$ + S) construction
of a suffix array, where # is the number of strings and S is the length of the string.
Problem 19.6.

Palindrome Substring palindromesubstring

The Parameters of Polynomial Hashes
Until now, we have glossed over the choice of M and p in our polynomial hashing. These
choices happen to be important. First of all, we want M and p to be relatively prime. This

387

https://heap.link/problem/palindromesubstring

CHAPTER 19. STRINGS

ensures p has an inverse modulo M, which we use when erasing characters from the end
of a hash. Additionally, p' mod M have a smaller period when p and M share a factor.

We wish M to be sufficiently large, to avoid hash collisions. If we compare the hashes of
¢ strings, we want M = Q(/c) to get a reasonable chance at avoiding collisions. However,
this depends on how we use hashing. p must be somewhat large as well. If p is smaller
than the alphabet, we get trivial collisions such as H(10) = H(p).

Whenever we perform rolling hashes, we must have (M — 1) p < 2%* if we use 64-bit
unsigned integers to implement hashes. Otherwise, the addition of a character would
overflow. If we perform substring hashes, we instead need that (M —1)* < 2%, since we
perform multiplication of a hash and an arbitrary power of p. When using 32-bit or 128-bit
hashes, these limits change correspondingly. Note that the choice of hash size depends on
how large an M we can choose, which affect collision rates.

One might be tempted to choose M = 254
cheap way of using hashes modulo 2°*. This is a bad idea, since it is possible to construct
strings which are highly prone to collisions.

and use the overflow of 64-bit integers as a

Definition 19.2 — Thue-Morse Sequence
Let the binary sequence 7; be defined as

0 ifi=0
T;i = o
Ti-1Ti—1 ifi>0

The Thue-Morse sequence is the infinite sequence 7; as i - co.

This sequence is well-defined since 7; is a prefix of 7;_;, meaning each recursive step
only append a string to the sequence. It starts 0, 01, 0110, 01101001, 0110100110010110.

Exercise 19.7. Prove that 7,; is a palindrome.

Theorem 19.2
For a polynomial hash H with an odd p, 2

n(n

| H(%,) - H(7)

Proof. We will prove this by induction on n. For n = 0, we have 1| | H(7,)) — H(7,,)
which is vacuously true.
In our inductive step, we have that

H(7,) = H(tp[Tomt) = p* - H(Tor) + H(70m1)

and)
H(T,) = H(Toillta1) = p* - H(7m) + H(Ty 1)

388

19.3. HASHING

Then,

H(Ty) - H(7,) = p* (H(74m) - H(Tom)) + (H(Tomr) - H(7am1))
= (p*" ~1)(H(tsm) - H(T))

Note that pzn_1 -1=(pzn_2 -1)(sz +1) If p is odd, the second factor is divisible by
2. By expanding sz, we can prove that pzn_1 is divisible by 2".
Using our induction assumption, we have that

27257 | (0 - 1)(H(1am1) - H(TD))

(n-1)n n(n+l) .
But2"-272 =277 , proving our statement. O

This means that we can construct a string of length linear in the bit size of M that causes
hash collisions if we choose M as a power of 2, explaining why it is a bad choice.

2D Polynomial Hashing

Polynomial hashing can also be applied to pattern matching in grids, by first performing
polynomial hashing on all rows of the grid (thus reducing the grid to a sequence) and
then on the columns.

Surveillance
By Aron Granberg and Johan Sannemo. Swedish Olympiad in Informatics 2016, |0l Qualifiers
Given a matrix of integers A = (ay,¢) find all occurrences of another matrix P = (p,c) in A which
may differ by a constant C. An occurrence (i, j) means that Aitr,jc = Pr.c + C where Cis a constant.

If we assume that C = 0, the problem is reduced to simple 2D pattern matching, which
is easily solved by hashing. The requirement that such a pattern should be invariant to
addition by a constant is a bit more complicated.

How would we solve this problem in one dimension, i.e. when r = 1? In this case, we
have that a match on column j would imply

a,j—pra=¢

atj+n-1—Pin =¢C

Since c is arbitrary, this means the only condition is that
aij—pP11=""=0Lj+n-1 " P1Ln =€

389

CHAPTER 19. STRINGS

Rearranging this gives us that
aij — ai,j+1 = P11~ P1,2

aij+1 — aij+2 = P1,2 — P1,3

By computing these two sequences of the adjacent differences of elements a, ; and r,,;, we
have reduced the problem to substring matching and can apply hashing. In 2D, we can do
something similar. For a match (i, j), it is sufficient that this property holds for every line
and every column in the match. We can then find matches using two 2D hashes.
Problem 19.8.

Chasing Subs chasingsubs

ADDITIONAL EXERCISES

Problem 19.9.

Baza baza

Prefix Free Code prefixfreecode
Just a Quiz justaquiz

NoOTES

rabin karp paper
KMP
hashing

390

https://heap.link/problem/chasingsubs
https://heap.link/problem/baza
https://heap.link/problem/prefixfreecode
https://heap.link/problem/justaquiz

Appendices

CHAPTER A

Competition Strategy

Competitive programming is what we call the mind sport of solving algorithmical prob-
lems and coding their solutions, often under the pressure of time. Most programming
competitions are performed online, at your own computer through some kind of online

judge system. For students of either high school or university, there are two main competi-
tions. High school students compete in the International Olympiad in Informatics (101),
and university students go for the International Collegiate Programming Contest (ICPC).

Different competition styles have different difficulty, problem types and strategies. In
this chapter, we will discuss some basic strategy of programming competitions, and give
tips on how to improve your competitive skills.

Aa 10l

The IOI is an international event where a large number of countries send teams of up
to 4 high school students to compete individually against each other during two days of
competition. Every participating country has its own national selection olympiad first.

During a standard IOI contest, contestants are given 5 hours to solve 3 problems, each
worth at most 100 points. These problems are not given in any particular order, and the
scores of the other contestants are hidden until the end of the contest. Generally none of
the problems are “easy” in the sense that it is immediately obvious how to solve the problem
in the same way the first 1-2 problems of most other competitions are. This poses a large
problem, in particular for the amateur. Without any trivial problems nor guidance from
other contestants on what problems to focus on, how does an IOI competitor prioritize?
The problem is further exacerbated by problems not having a simple binary scoring, with
a submission being either accepted or rejected. Instead, IOI problems contain many so-
called subtasks. These subtasks give partial credit for the problem, and contain additional
restrictions and limits on either input or output. Some problems do not even use discrete
subtasks. In these tasks, scoring is done on some scale which determines how “good” the
output produced by your program is.

Strategy

Very few contestants manage to solve every problem fully during an IOI contest. You are
most likely not one of them, which leaves you with two options - you either skip a problem
entirely, or you solve some of its subtasks. At the start of the competition, you should

393

APPENDIX A. COMPETITION STRATEGY

read through every problem and all of the subtasks. In the IOI you do not get extra points
for submitting faster. Thus, it does not matter if you read the problems at the beginning
instead of rushing to solve the first problem you read. Once you have read all the subtasks,
you will often see the solutions to some of the subtasks immediately. Take note of the
subtasks which you know how to solve!

Deciding on which order you should solve subtasks in is probably one of the most
difficult parts of the IOI for contestants at or below the silver medal level. In IOI 2016, the
difference between receiving a gold medal and a silver medal was a mere 3 points. On
one of the problems, with subtasks worth 11, 23, 30 and 36 points, the first silver medalist
solved the third subtask, worth 30 points (a submission that possibly was a failed attempt
at 100 points). Most competitors instead solved the first two subtasks, together worth 34
points. If the contestant had solved the first two subtasks instead, he would have gotten a
gold medal.

The problem basically boils down to the question when should I solve subtasks instead
of focusing on a 100 point solution? There is no easy answer to this question, due to the
lack of information about the other contestants’ performances. First of all, you need to get
a good sense of how difficult a solution will be to implement correctly before you attempt
it. If you only have 30 minutes left of a competition, it might not be a great idea to go for a
100 point solution on a very tricky problem. Instead, you might want to focus on some
of the easier subtasks you have left on this or other problems. If you fail your 100 point
solution which took over an hour to code, it is nice to know you did not have some easy
subtasks worth 30-60 points which could have given you a medal.

Problems without discrete scoring (often called heuristic problems) are almost always
the hardest ones to get a full score on. These problems tend to be very fun, and some
contestants often spend way too much time on these problems. They are treacherous in
that it is often easy to increase your score by something. However, those 30 minutes you
spent to gain one additional point may have been better spent coding a 15 point subtask on
another problem. As a general rule, go for the heuristic problem last during a competition.
This does not mean to skip the problem unless you completely solve the other two, just to
focus on them until you decide that the heuristic problem is worth more points given the
remaining time.

In IO, you are allowed to submit solution attempts a large number of times, without
any penalty. Use this opportunity! When submitting a solution, you will generally be told
the results of your submission on each of the secret test cases. This provides you with
much details. For example, you can get a sense of how correct or wrong your algorithm
is. If you only fail 1-2 cases, you probably just have a minor bug, but your algorithm in
general is probably correct. You can also see if your algorithm is fast enough, since you
will be told the execution time of your program on the test cases. Whenever you make a
change to your code which you think affect correctness or speed — submit it again! This
gives you a sense of your progress, and also works as a good regression test. If your change

394

A.2. ICPC

introduced more problems, you will know.
Whenever your solution should pass a subtask, submit it. These subtask results will
help you catch bugs earlier when you have less code to debug.

Getting Better

The IOI usually tend to have pretty hard problems. Some areas get rather little attention.
For example, there are basically no pure implementation tasks and very little geometry.

First and foremost, make sure you are familiar with all the content in the IOI syllabus'.
This is an official document which details what areas are allowed in IOI tasks. This book
deals with most, if not all of the topics in the IOI syllabus.

In the Swedish IOI team, most of the top performers tend to also be good mathematical
problem solvers (also getting IMO medals). Combinatorial problems from mathematical
competitions tend to be somewhat similar to the algorithmic frame of mind, and can be
good practice for the difficult IOI problems.

When selecting problems to practice on, there are a large number of national olympiads
with great problems. The Croatian Open Competition in Informatics® is a good source.
Their competitions are generally a bit easier than solving IOI with full marks, but are good
practice. Additionally, they have a final round (the Croatian Olympiad in Informatics)
which are of high quality and difficulty. COCI publishes solutions for all of their contests.
These solutions help a lot in training.

One step up in difficulty from COCI is the Polish Olympiad in Informatics®. This is one
of the most difficult European national olympiad published in English, but unfortunately
they do not publish solutions in English for their competitions.

There are also many regional olympiads, such as the Baltic, Balkan, Central European
and the Asia-Pacific Olympiads in Informatics. Their difficulty is often higher than that of
national olympiads, and of the same format as an IOI contest (3 problems, 5 hours). These,
and old IOI problems, are probably the best sources of practice after having mastered the
basics of competitive programming.

A2 ICPC

In ICPC, you compete in teams of three to solve about 10-12 problems during 5 hours. A
twist in in the ICPC-style competitions is that the team shares a single computer. This
makes it a bit harder to prioritize tasks in ICPC competitions than in IOI competitions.
You will often have multiple problems ready to be coded, and wait for the computer. In
ICPC, you see the progress of every other team as well, which gives you some suggestions
on what to solve. As a beginner or medium-level team, this means you will generally have

"https://heap.link/ioi-syllabus
Zhttps://heap.link/judge:coci
3https://heap.link/judge:poi

395

https://heap.link/ioi-syllabus
https://heap.link/judge:coci
https://heap.link/judge:poi

APPENDIX A. COMPETITION STRATEGY

a good idea on what to solve next, since many better teams will have prioritized tasks
correctly for you.

ICPC scoring is based on two factors. First, teams are ranked by the number of solved
problems. As a tie breaker, the penalty time of the teams are used. The penalty time of
a single problem is the number of minutes into the contest when your first successful
attempt was submitted, plus a 20 minute penalty for any rejected attempts. Your total
penalty time is the sum of penalties for every problem.

Strategy

In general, teams will be subject to the penalty tie-breaking. In the 2016 ICPC World

Finals, both the winners and the team in second place solved 11 problems. Their penalty

time differed by a mere 7 minutes! While such a small penalty difference in the very top is

rather unusual, it shows the importance of taking your penalty into account.
Minimizing penalties generally comes down to a few basic strategic points:

« Solving the problems in the right order.
o Solving each problem quickly.

« Minimizing the number of rejected attempts.

In the very beginning of an ICPC contest, the first few problems will be solved quickly.
In 2016, the first accepted submissions to five of the problems came in after 11, 15, 18, 32, 44
minutes. On the other hand, after 44 minutes no team had solved all of those problems.
Why does not every team solve the problems in the same order? Teams are of different
skill in different areas, make different judgment calls regarding difficulty or (especially
early in the contest) simply read the problem in a different order. The better you get, the
harder it is to distinguish between the “easy” problems of a contest — they are all “trivial”
and will take less than 10-15 minutes to solve and code.

Unless you are a very good team or have very significant variations in skill among
different areas (e.g., you are graph theory experts but do not know how to compute the
area of a triangle), you should probably follow the order the other teams choose in solving
the problems. In this case, you will generally always be a few problems behind the top
teams.

The better you get, the harder it is to exploit the scoreboard. You will more often be
tied in the top with teams who have solved the exact same problems. The problems that
teams above you have solved but you have not may only be solved by 1-2 teams, which is
not a particularly significant indicator in terms of difficulty. Teams who are very strong at
math might prioritize a hard maths problem before an easier (on average for most teams)
dynamic programming problem. This can risk confusing you into solving the wrong
problems for the particular situation of your team.

The amount of cooperation during a contest is difficult to decide upon. The optimal
amount varies a lot between different teams. In general, the amount of cooperation should

396

A.2. ICPC

increase within a single contest from the start to the end. In the beginning, you should
work in parallel as much as possible, to quickly read all the problems, pick out the easy-
medium problems and start solving them. Once you have competed in a few contests, you
will generally know the approximate difficulty of the simplest tasks, so you can skim the
problem set for problems of this difficulty. Sometimes, you find an even easier problem in
the beginning than the one the team decided to start coding.

If you run out of problems to code, you waste computer time. Generally, this should
not happen. If it does, you need to become faster at solving problems.

Towards the end of the contest, it is a common mistake to parallelize on several of the
hard problems at the same time. This carries a risk of not solving any of the problems in
the end, due to none of the problems getting sufficient attention. Just as with subtasks in
IO, this is the hardest part of prioritizing tasks. During the last hour of an ICPC contest,
the previously public scoreboard becomes frozen. You can still see the number of attempts
other teams make, but not whether they were successful. Hence, you can not really know
how many problems you have to solve to get the position that you want. Learning your
own limits and practicing a lot as a team - especially on difficult contests — will help you
get a feeling for how likely you are to get in all of your problems if you parallelize.

Read all the problems! You do not want to be in a situation where you run out of time
during a competition, just to discover there was some easy problem you knew how to
solve but never read the statement of. ICPC contests are made more complex by the fact
that you are three different persons, with different skills and knowledge. Just because you
can not solve a problem does not mean your team mates will not find the problem trivial,
have seen something similar before or are just better at solving this kind of problem.

The scoreboard also displays failed attempts. If you see a problem where many teams
require extra attempts, be more careful in your coding. Maybe you can perform some
extra tests before submitting, or make a final read-through of the problem and solution to
make sure you did not miss any details.

If you get Wrong Answer, you may want to spend a few minutes to code up your own
test case generators. Prefer generators which create cases where you already know the
answers. Learning e.g. Python for this helps, since it usually takes under a minute to code
a reasonably complex input generator.

If you get Time Limit Exceeded, or even suspect time might be an issue - code a test
case generator. Losing a minute on testing your program on the worst case, versus a risk
of losing 20 minutes to penalty is be a trade-off worth considering on some problems.

You are allowed to ask questions to the judges about ambiguities in the problems. Do
this the moment you think something is ambiguous (judges generally take a few valuable
minutes in answering). Most of the time they give you a “No comment” response, in which
case the perceived ambiguity probably was not one.

If neither you nor your team mates can find a bug in a rejected solution, consider
coding it again from scratch. Often, this can be done rather quickly when you have already

397

APPENDIX A. COMPETITION STRATEGY

coded a solution.

Getting Better

« Practice a lot with your team. Having a good team dynamic and learning what

problems the other team members excel at can be the difference that helps you to
solve an extra problem during a contest.

Learn to debug on paper. Wasting computer time for debugging means not writing
code! Whenever you submit a problem, print the code. This can save you a few
minutes in getting your print-outs when judging is slow (in case your submission
will need debugging). If your attempt was rejected, you can study your code on
paper to find bugs. If you fail on the sample test cases and it takes more than a few
minutes to fix, add a few lines of debug output and print it as well (or display it on
half the computer screen).

Learn to write code on paper while waiting for the computer. In particular, tricky
subroutines and formulas are great to hammer out on paper before occupying
valuable computer time.

Focus your practice on your weak areas. If you write buggy code, learn your pro-
gramming language better and code many complex solutions. If your team is
bad at geometry, practice geometry problems. If you get stressed during contests,
make sure you practice under time pressure. For example, Codeforces # has an
excellent gym feature, where you can compete retroactively in a contest using the
same amount of time as in the original contest. The scoreboard will then show the
corresponding scoreboard from the original contest during any given time.

4https://heap.link/judge:codeforces

398

https://heap.link/judge:codeforces

CHAPTER B

Mathematical Notation

This book is intended to be mostly readable by a mathematically strong high school student.
There some certain knowledge about e.g. pre-calculus (trigonometry, polynomials) is
assumed, but not much else. In most places where more math is required it’s described
from the ground up. This appendix briefly reviews mathematical notation that’s used but
might not yet have been encountered.

B.1 Sets

A set is an unordered collection of distinct objects, such as numbers, letters, other sets,
and so on. The objects contained within a set are called its elements, or members. Sets are
written as a comma-separated list of its elements, enclosed by curly brackets:

A=1{2,3,5,7}.

In this example, A contains four elements: the integers 2, 3,5 and 7.

Because a set is unordered and only contains distinct objects, the set {1,2,2,3} is the
exact same set as {3,2,1,1} and {1, 2,3}.

If x is an element in a set S, we write that x € S. For example, we have that 2 € A
(referring to our example A above). Conversely, we use the notation x ¢ S when the
opposite holds. We have e.g., that 11 ¢ A.

Another way of describing the elements of a set uses the set builder notation, in which
a set is constructed by explaining what properties its elements should have. The general
syntax is

{element | properties that the element must have}.

To construct the set of all even integers, we use the syntax
{2i | i is an integer}

which is read as “the set containing all numbers of the form 2i where i is an integer. To
construct the set of all primes, we write

{p | p is prime}.

Some sets are used often enough to be assigned their own symbols:

399

APPENDIX B. MATHEMATICAL NOTATION

Z - the set of integers {...,-2,-1,0,1,2,... },

o Z, - the set of positive integers {1,2,3,... },

o N - the set of non-negative integers {0,1,2, ...},

o Q - the set of all rational numbers {% | p, q integers where q # 0},
o R - the set of all real numbers,

o [n] - the set of the first n positive integers {1,2,...,n}, and

o & - the empty set.

A set A is a subset of a set S if, for every x € A, we also have x € S (i.e., every member
of A is a member of §). We denote this with A C S. For example

(2,3} € {2,3,5,7)

Ga2)e

For any set S, we have that @ ¢ S and S € S. Whenever a set A is not a subset of another
set B, we write that A ¢ B. For example,

{271 ¢Q

and

since 7 is not a rational number.

We say that sets A and B are equal whenever x € A if and only if x € B. This is
equivalent to A C B and B € A. Sometimes, we will use the latter condition when proving
set equality, i.e., first proving that every element of A must also be an element of B and
then the other way round.

Sets have many useful operations defined on them. The intersection A n B of two sets
A and B is the set containing all the elements which are members of both sets. If the
intersection of two sets is the empty set, we call the sets disjoint. A similar concept is the
union A U B of A and B, defined as the set containing the elements which are members
of either set. The set difference A \ B is defined as those elements present in A but not
in B. Finally, there’s a special set difference called the complement. It's sometimes clear
from context that were only working with subsets of some specific “universe set” U. The
complement set A is then defined to be the difference between U and A.

For example, if

X={1,2,3,4},Y = {4,5,6,7}, Z = {1,2,6,7}

then
XnY={4}

XNYnZ=y

400

B.2. FuncrioNs

XUZ={1,2,3,4,6,7}
Y\ Z={4,5}.

For two numbers a and b, we define the interval [a, b] to be the set {c | a < ¢ < b}. If
b < a, this is the empty set. An interval that includes both of its endpoint is called closed.
If an interval does not include an endpoint, it is written as [a, b), (a, b] or (a, b) if it does
not include the right endpoint, left endpoint or neither endpoint, respectively (note that
[a, a) is also the empty set). The first two are called half-open intervals and the last a open
interval.

B.2 Functions

A function f is a rule that maps values x to another value called the image of x, denoted
f(x). The set of values that f maps is called its domain, while the set of values it can map
values to is called its codomain. If a function f has domain X and codomain Y, we write
f: X — Y. While the codomain is the set of allowed images f(x), it's not necessarily so
that every element in the codomain is the image of some value. Instead, the set of actual
images {f(x) | x € X} is in turn called the image of f.

If a function has no two x; # x, where f(x;) = f(x,), we call f injective. An injective
function also has an inverse function f~' that maps the image f(x) back to the argument
x, so that f7'(f(x)) = x. The codomain and image can of course coincide, so that f! is
defined for the entire codomain. Such a function is called surjective. Finally, a function
that’s both injective and surjective is called bijective.

As an example, the function f : R \ {1} > R defined by f(x) = *- has the domain
R~ {1} (x = 1 would lead to zero division), the codomain IR, but the image R\ {0} (there’s
no x such that f(x) = 0). It’s injective since f(x;) = 1—1x1 = 1—1x2 = f(x,), after taking
inverses on both sides, implies 1 — x; = 1 — x; so that x; = x,. The function has the inverse
f7'(x) = £ If f instead had the codomain R \ {0} (it’s image) it would be surjective
(and thus also bijective).

B.3 Sequences and Intervals

A sequence is an ordered collection of values (predominantly numbers) such as 1,2, 1, 3,1,
4,.... Sequences will mostly be a list of sub-scripted variables, such as a;, a3,...,a,. A
shorthand for this is (a;)!_,, denoting the sequence of variables a; where i ranges from 1
to . An infinite sequence is given oo as its upper bound: (a;)%;.

A subsequence of a sequence a; is a sequence b; where all the values of b; appear in
order in a;, i.e. there is some ¢; < ¢; < ... such that b; = a,,, b, = a., and so on.

In contrast, a subarray or sublist is a subsequence where all the values are consecutive
(i.e. the subsequence a;, a;41, ..., a; for some i, j.

401

APPENDIX B. MATHEMATICAL NOTATION

B.4 Sums and Products

The most common mathematical expressions we deal with are sums of sequences of
numbers, such as 1+ 2 + --- + n. Such sums often have a variable number of terms and
complex summands, suchas1-3-5+3:5-7+---+ (2n+1)(2n+3)(2n +5). In these cases,
sums given in the form of a few leading and trailing terms, with the remaining part hidden
by ... is too imprecise. Instead, we use a special syntax for writing sums in a formal way -
the sum operator:

The symbol denotes the sum of the j — k +1terms a; + aj,; + aji2 + -+ + ag, which we
read as “the sum of a; from j to k”.
For example, we can express the sum 2 + 4 + 6 + - - - + 12 of the 6 first even numbers as

6
> 2i.
i=1

Many useful sums have closed forms - expressions in which we do not need sums of a
variable number of terms. For example:

n(n+1)

M:

i=

21 — 2n+1 L

M*ﬁ

0

The sum of the inverses of the first # natural numbers has a very neat approximation,
which we occasionally use in the book:

:\r—‘

. o . !
This is a reasonable approximation, since /" +dx = In(l).
There is an analogous notation for products, using the product operator []:

k
[]a
i=j
denotes the product of the j — k +1terms a; - aj;1 - @ji2 - -+ - ag, which we read as “the

product of a; from j to k”. In this way, the product1-3-5----- (2n — 1) of the first n odd
integers can be written as

n
[]2i-1
i=1

402

B.4. Sums AND PrRODUCTS

NoOTES

If you need a refresher on basic mathematics such as single-variable calculus, Calculus
[47] by Michael Spivak is a solid textbook. It is not the easiest book, but one the best
undergraduate text on single-variable calculus if you take the time to work it through.

For a gentle introduction to discrete mathematics, Discrete and Combinatorial Math-
ematics: An Applied Introduction [20] by Ralph Grimaldi is a nice book with a lot of
breadth.

Logic in Computer Science [24] is an introduction to formal logic, with many interest-
ing computational applications. The first chapter on propositional logic is sufficient for
most algorithmic problem solving, but the remaining chapters shows many non-obvious
applications that makes logic relevant to computer science.

One of the best works on discrete mathematics ever produced for the aspiring algo-
rithmic problem solver is Concrete Mathematics [29], co-authored by famous computer
scientist Donald Knuth. It is rather heavy-weight, and probably serves better as a more
in-depth study of the foundations of discrete mathematics rather than an introductory
text.

403

APPENDIX B. MATHEMATICAL NOTATION

404

Hints

CHAPTER 1

1.1 Try dividing cards into smaller piles that can be sorted separately.
1.6 The optimal number of questions is 6.
1.8 What happens if we run the algorithm several times?

CHAPTER 2

2.16 Try solving it for the special case y = 2 first.
2.34 What exactly are we changing when we assign to the reference in func?)

CHAPTER 3
CHAPTER 4

CHAPTER§

5.1 In the best case, line 4 of the insertion sort pseudo code never executes.
5.3 When is log2 n<n?

5.4 ¢ =2 for the upper bound.

5.5

1. Yes.
2. No.

5.6 Binomial expansion.
5.7 How many times does each digit in the number change?

CHAPTER 6

6.3 What element in an array can be removed in ©(1)?

6.6 What happens if you insert 2 elements into one stack, and then pop them to insert
them into the other one?

6.7 How can you get the last element of a queue?

6.9 How many elements does each level in the tree have?

6.12

1. Sum the maximum number of steps each element can move.

2. What is the limit of a geometric series?

405

HinTs

6.14 What happens when x is even?
6.16 Remove an element immediately after expansion.

CHAPTER 7

7.4 Use that 1.62 +1 < 1.62%.
7.5 The positive root of the equation x
7.6

3 = x2 + x! +1lies between 1.83 and 1.84.

1. The n choices are which of the two letters to put on each position in the string.

2. The n choices are whether to include each element or not.

7.7 Since the three recursions are structurally identical, they will have the same time
complexity T(n).
7.10 Add the lines one at a time.

CHAPTER 8

8.2 How many edges are added by the n’th vertex?

8.4 How many different degrees can the graph have?

8.15 What does the algorithm say that the distance for such a cycle is?
8.17 Add a new vertex to the graph.

8.19 Where in the queue are the vertices of the current distance and the distance plus one
located?

8.22 Look at the first time the DFS algorithm to color vertices fails.
8.26 Induction.

8.27 How does the search visit the entire graph?

8.29 Look at the tree rooted in p.

8.31 What vertices can be the first in the ordering?

8.33 Assume there is a cycle of length 4 - shorten it.

CHAPTER 9

9.3 Consider two different hours. What values can the angles take?
9.5 How many calls are made for each value of at?

CHAPTER 10

102 Try T = 12.
10.6

1. Evaluate the sum for the sorted order and remember the triangle inequality.

406

HinTs

10.8 How many intervals in the optimal solution can it overlap?

10.9 The proof is similar to the argument we used when deciding what interval to choose;
use a swapping argument!

10.11 What does the previous solution do when allocating intervals into an infinite number
of intervals?

10.16 Look at the first beam that exits at an incorrect row. Why was this beam not
redirected into the right row?

10.17

1. Thereisal x 3 counter-example.

2. It’s in the solution to Exercise .

CHAPTER 11

11.3 How does answers for a vertex i and next|i] relate?

1.5 The recursion only needs one more case.

11.16 What values of best are used?

11.20 How does the new recurrence look?

11.22 Is there duplicate work done when processing the subsets {1,2,3,4} and {2, 3, 4,5}?

CHAPTER 12

121 4" = (2")%,and 1 =1

12.3 What's the complexity of each step?

12.5 Can you find the smallest element of the combined sorted array?

12.7 Quickly find the next and previous occurrence of the k’th element.

12.16 Look at the set of links that a newly added link places on a cycle.

12.17 What's true for one of the subtrees of every non-leaf centroid vertex?
12.18 Assume there are two centroids.

12.19 The query to ask is the obvious one.

12.20 The idea behind the centroid finding algorithm gives you necessary conditions for
the optimal meeting point.

12.21 When is lca(b, ¢) and b equally far away from a?

12.22 Derive a way to answer “is u an ancestor of v?”.

12.23 Compute the probability of the complement event.

12.24 Similar to Exercise 12.20.

12.25 Fix a and let b be uniformly random; consider now the possible subtrees.
12.26 Count occurrences.

12.27 Let A only contain values 0 and 1.

12.28 What do you want to check instead of a = el?

12.30 Consider the two parts of the course after splitting it in v.

407

HinTs

CHAPTER 13

13.6 What happens when a single edge is added to a tree?

CHAPTER 14

14.9 Replace each trip between two non-terminal stations on a line by a sequence of trips
that are as good.
14.12 For sufficiency, prove that a negative length cycle can reach v.

CHAPTER 15

CHAPTER 16

16.4 The solution is almost identical to the Knight Packing.

16.7 Formulate inequalities for the worst-case number of terminal states that must be
checked for a winning and losing position with # moves remaining. What happens if they
are equalities?

16.8 Proof by induction, similar to why a breadth-first search visits vertices in distance
order.

CHAPTER 17

17.3 Use the symmetry of divisors.

17.5 Use the definition.

17.6 Use the definition.

17.14 What can be said about the remaining primes of N after a prime i is divided away?
17.30 Look at 10",

17.37 Look at (n,i) =d.

CHAPTER 18

18.1 Whats the choice for each element?

18.7 How many equivalent rotations are there?

18.11 What's the order modulo [?

18.12 Look at what elements a specific one in the cycle is mapped to.
18.14 Both sides count the number of ways to do the same two choices.
18.15

1. Overflow of ab when b # 0 can always be detected by checking if % = a for unsigned
integers.

2. Again, both sides represent the same two choices.

408

HinTs

18.17 Consider the last of the n elements.
18.18

. What are the possible sizes of a subset?

—

2. Find a bijection between odd- and even-sized subsets.
3. Youre counting the subsets of all subsets.

4. Which is the last element chosen?

18.20 Let b(i) = (7).

18.22 Where does the line cross the top-left to bottom-right diagonal?
18.27 What are the sets A, B, C?

18.28 How many times is any given element counted?

18.31 The big stack is the only limiting factor.

18.32 Look at all elements between the two that swap places.

18.33 There are several approaches. The simplest one uses segment trees.
18.34 You already know this is true for 3 x 3 subgrid.

18.35 How many swaps do you need to transform a permutation to the identity permuta-
tion?

18.36 Find a bijection.

CHAPTER 19

409

HinTs

410

Solutions

CHAPTER 1

1.1 One possible solution is to first divide the cards into separate piles by values 1-100 000,
100001 — 200000, If we sort each such pile, the entire stack of cards is sorted by
putting the piles together. Each such pile can be sorted the same way by instead dividing
the cards up based on their 10’000 digits, and so on.

1.2

1. The input consists of two integers a and b, not both 0. The output should be the
greatest common divisor of a and b.

2. 'The input consists of a sequence of real numbers, the coefficients x; of a polynomial.
The output should be a real number that is a root of the polynomial.

3. The input consists of two integers a and b. The output should be the product ab.

1.3 The input and output could be described using a protocol that dictates what the
algorithm and the counterpart answering questions (called an oracle) are allowed to do
and at what times. For example: the algorithm should repeatedly output an integer, to ask
how it relates to the hidden integer. The oracle will then reply with the string “higher”,
“lower” or “equal”

The problem is called interactive since the algorithm interactively gathers information
from the oracle.
1.4 Many common arithmetic and algebraic problems, such as those in Exercise 1.2 are
solved using formal methods that constitute algorithms.
1.6 One can achieve 6 questions by always asking about the midpoint of the range of
possible numbers. For example, after asking about the number 50, you know if the correct
number is between 1 — 49 or 51 — 100.
1.8 Given an algorithm that is correct with a probability 0.5 + « for some « > 0, we can
find the correct answer by running it many times and choosing the answer that was most
common.

If the algorithm is incorrect on 25% of cases, there is a good chance a problem has a
case that the algorithm fails on.
1.12 If we let the input n-letter word S have the letters sg, sy, . .., S,_1, it reads the same
backwards and forwards if sgs;...S,_1 = Sy—_154—2...50. We thus need to check all the
letter pairs (so, Sn—1) ($1, Sn—2) and so forth for equality.

1: procedure PALINDROME(string S)

411

B o®

SOLUTIONS

for i from 0 ton —1do
if S; # S,_1_; then
return false

return true

CHAPTER 2

2.7 Integer division in C++ is always rounded towards zero.

2.13 When the program reads input into a string variable it only reads the text until the
first whitespace, so only the first word is read.

2.16 We only analyze the case where x and y are positive. Assume that0 < a < £ <a+1,
so that the result when rounded to an integer away from zero is a + 1. Multiplying by y
givesus ay < x < ay + y,sothat ay < x —1< ay + y (since all values are now integers).
Finally, adding y to both inequalities gives us ay + y < x — 1+ y < ay + 2y. After dividing

by y, wegeta +1< % < a + 2. This means that the result of - rounded towards

zero is a + 1, which is what we wanted.
Analysis for negative x and y is similar.

2.23

for (int i = repetitions - 1; 1 >= @; i--)

2.34 A reference must refer to something that can be changed. Variables can be changed,
but not the constant 4.

2.35

Point translate(double tx, double ty) { return Point(x + tx, y + ty);

CHAPTER 3

3.2

« it works; members are not initialized,

« it works; members are initialized using the constructor,

« compilation fails if the vector is initialized with a size, otherwise it works,
« it works; members are initialized using the constructor.

3.4 for (auto it = v.rbegin(); it != v.rend(); ++it)

3.5 Simon is fish food

412

SOLUTIONS

CHAPTER 4

CHAPTER 5

5.1 Consider the case when the array is already sorted. In this case, the inner loop on line
4 never executes, since A[j] > A[j — 1] for all j. Thus, only the lines that take linear time
in total are executed, making O(#) an upper bound on the base case. On the other hand,
the loop on line 2 always executes a linear number of times no matter the case, so Q(n) is
also a lower bound. Thus, the algorithm has a ®(n) best-case running time.

5.2 To compute the sum in ®(#n) time, we can add all the variables to a counter using a

for loop, one at a time.
n(n+1)
2

5.3 Let ng = 7. For any n > 1, we have log* n < n as n < 2" (which can be proved using
either induction or simple calculus). In this case, 10n> + 7n — 5+ log® n < 10n* + n® + n? =
121, Thus, with ¢ = 12 we get the required statement.

To solve the problem in constant time, the formulal+2+---+n = can be used.

5.4 Clearly max{f(n),g(n)} < f(n) + g(n) since the maximum of the two functions is
always equal to one of the functions. This means that f(n)+g(n) = Q(max{f(n), g(n)})
with ¢ = 1. Similarly, f(n) + g(n) < 2max{f(n), g(n)} by the fact that each function
individually is smaller than their maximum. Thus f(n) + g(n) = O(max{f(n),g(n)})
with ¢ = 2. Together this proves the statement.

55

1. This is clear with ¢ = 2.

2. For any c, picking 7 such that 2" > ¢ gives us 22" = 2" - 2" > ¢2", 50 no ¢ can satisfy
the definition.

5.6 First, note that polynomials of higher powers are always greater than polynomials of
lower powers eventually:

ank < nk+1
is true whenever n > a.

Next, we can write (1 + a)? as the sum of n® plus a lot of terms of lower powers of

using the formula for the binomial expansion. However, this means that max{n’, (n+a)®—
n®} = n® for sufficiently large n. Thus, (n+a)® = n® + ((n+a)? —n®) = @(max{n’, (n+
a)? - n%}) = @n® by a previous result.
5.7 The amortized complexity is equal to the number of times a digit changes in the
number. The last digit changes every time, i.e. 2" times. The second last digit only changes
every second time when the last digit carries over. This holds in general, so that the total
number of times each digit changes is 2° + 2" +--- + 2" =2"*1 -1 = @(2").

413

SOLUTIONS

CHAPTER 6

6.3 Swap the element to be removed and the last element in the array. Now remove the
last element of the array in ©(1).

6.6 Perform all queue insertions into one of the stacks, and all queue removals from the
other one. When the removal stack is empty, pop all elements in the insertion stack and
insert them into the removal stack instead. This reverses the order of the elements in the
first stack, giving us the queue ordering.

6.7 Insert all elements into the first queue. When poping an element, move all but the last
elements in the first queue into the second, and then return the last element. Then, swap
the roles of the queues, inserting elements into the second one.

6.8 Once the queue has more unused elements than used elements, create a new vector of
size equal to the number of elements, move the elements into that vector and remove the
old one. This never uses a vector of size larger than 2n.

6.9 The i’th level in the tree has 2! elements, since they double on each level. Consider
the k’th element on the i’th level except the lowest one. It has index 20 + 2! +- -+ 272 + k =
21714+ k—1. Left of its children, there are 2(k 1) children, since the k —1 elements to the left
each have 2 children. This means that the children have indices 2 +2(k —1) = 2" + 2k -2
and 2’ + 2k — 1. These indices satisfy the numbering properties.

6.1 The only parents that change are on the path that the new element bubbles up along.
On this path, a parent is always replaced by its own parent (except for the last one, which
is replaced by the new element). A parent is always greater than its grand-children, so
after these swaps the heap property still holds.

6.12 Assume that the tree has n = 2¥ elements. The bottom # elements will move o steps.
The 5 elements of the next layer moves at most 1 step. The ; elements of the next layer
moves at most 2 step, and so on. In total, this means that there are most

n .n _n n
—+2—+3—+- -+ k—
2 4 8 2k

movements. Note that

n n

—+—+--<n
2 4

n n n
—_ 4 — + Sf
4 8 2
n n n
— 4+ — Sf
8 16 4

and so on. If we sum up all of these inequalities, we get that the original sum

414

SOLUTIONS

proving that the elements are at most moved a linear number of time.
6.13 There are many ways that work. One of them is

inty = x + (x &§ -x);

int next = ((x“y) >> (__builtin_ctz(x) + 2)) | vy;
6.14 If x has many trailing zeroes in its binary representation, the lower bits of Ax do too,
reducing the usefulness to hashing.
6.15 No - the analysis still results in an expected constant number of collisions.
6.16 Removing an element immediately after the capacity increased causes it to shrink
due to how the limits are chosen. Adding and removing an element at this boundary
repeatedly causes each operation to take linear time, rather than amortized constant.

CHAPTER 7

7.1 Theyare0,1,1, 2, 3,5, 8,13, 21, 34, 55, 89, 144, 233, 377.
7.4 We have that T(n) = T(n—1) + T(n - 2) + ©(1). Let m be the largest value that
the ®(1) term takes. Since scaling a function by a constant doesn’t change its asymptotic
behaviour, we can let all terms be divided by 5t so that the inequality T(n) < T(n —
1) + T(n - 2) + 0.0044 holds for all n.

The proof is now on induction on n. Assume that T(n—1) < ¢-1.62" 'and T(n-2) <
c-1.62"2 where ¢ > 1and n — 2 > 0. Then

T(n) <c-1.62"% +c-1.62"7" +0.0044 = ¢ - 1.62" (1 + 1.62) + 0.0044.
Next, note that 1 + 1.62 < 1.62% — 0.0044, so that
T(n) < c-1.62" — ¢-1.61"7%-0.0044 + 0.0044 < ¢ - 1.62"

where we used that ¢-1.61" > <lasc<land n -2 > 0.

Finally, choose ¢ to be such that T(0) < ¢ and T(1) < ¢ -1.62. By induction on #, the
above result shows that T'(n) < ¢-1.62" for all n > 0, so T(n) = O(1.62").
7.5 It’s given that T(n) > T(n —1) + T(n - 2) + T(n - 3). If, by induction, T(k) > 1.83*
for all k < n we get

T(n)>1.83""+1.83"2 +1.83"
=1.83"73(1+1.83 + 1.83%)
>1.83"7%1.83°
=1.83"

so the claim holds for T'(#n) too.

To formally prove an upper bound, you need to apply the same strategy as in the
solution to Exercise 7.4.
7.6

415

SOLUTIONS

1. Let A(n) be the number of such strings. If the last character of the string was a 8, the
remaining string can be formed in A(# — 1) ways. If the last character of the string
was an A, the second last character must have been a B (to avoid two consecutive A’s).
There are A(n — 2) ways in which the remaining string can be formed after fixing
these two letters, so that A(n) = A(n —1) + A(n — 2). The base cases are A(0) =1
and A(1) = 2.

2. Let B(n) be the number of such subsets. If the element 7 is to be included in the
subset, we can choose the remaining n — 1 elements in B(#n — 1) ways. If the element
n is to be excluded from the subset, the element n — 1 must be according to the
problem. The remaining #n — 2 elements can then be chosen in B(n —2) ways, for the
recursion B(n) = B(n —1) + B(n — 2). The base cases are A(0) =1and A(1) = 2.

7.7 The time complexity fulfills T(n) = 2T(n —1) + O(1). By induction, we get T'(n) =
©(2"). We perform three calls with this complexity, but that is a constant factor so the
complexity does not change.

710 If there are n —1lines in the plane already, adding the n’th line adds an extra n regions
- one for each intersection with another line, and one more for dividing the plane itself
into a region. This gives the recursion f(n) = f(n —1) + n with f(0) = 1 as base case.
Using induction, f(n) = @ +1L

CHAPTER 8

8.2 Adding the n’th vertex increases the number of edges by #n — 1, so the total number of
edgesis1+2+---+(n—-1) = @ (an identity that can be proven using induction).
8.3 The sum of all degrees is even. If there were an odd number of vertices of odd degree,
the sum of their degrees would be odd.

8.4 If the graph has n vertices, there are only #n possible degrees - those between 0 and
n — 1. The graph can not have one vertex with each of them, since the vertex with degree
n — 1 must be connected to the vertex with degree 0 — a contradiction. The # vertices can
only have n — 1 different degrees, so at least two of them have the same one.

8.8

1. The adjacency matrix is typically the best here, since the graph is not sparse at all.
The exception is if edges adjacent to a vertex have an important ordering among
themselves.

2. The adjacency matrix would take too much memory here. Adjacency lists are
typically faster, unless the problem needs to support one of the operations for which
adjacency maps are required.

3. Here, all three representations work, and which one is best depends entirely on what
graph operations the problem requires.

416

SOLUTIONS

8.12 In the second loop, we process the vertices in the exact same order, namely that
in which they were added to either atDistPlusOne. The only other change is that we use
distance[from| rather than dist when computing the distance of a neighbor, but these are
the same - the distance of the vertex from.

8.15 No - the distance reported for these cycles are always larger than for the smallest
cycle, so we don’t get an incorrect answer by including them.

8.17 Add an new vertex as single source and connect it to the original multiple source.s
The shortest distance to the new vertex is the shortest distance to any of the original sources
plus 1.

8.19 Replace the queue with a double-ended queue (“deque”) instead and push vertices
visited through 0 weight edges to the beginning of the queue.

8.22 In a two-colored graph, the vertices on a cycle alternate between red and blue, so it
has an equal number of red and blue vertices. The total number of vertices on the cycle is
thus an even number.

For the other direction, take a vertex s and color each vertex v blue or red depending
on whether d(s, v) is even or odd. If two adjacent vertices v and u have the same parity, the
distance must be the same (the distance of adjacent vertices differ by at most 1). Assume
that the shortest paths from s to v and u meets at some vertex w. Then there are disjoint
paths from w to v and from w to u of the same length. Combining these paths with the
edge {u, v} thus forms a cycle of odd length. This means that the suggested coloring works
as long as there is no odd cycle.

8.24 Assume that there are two different paths from u to v. If they meet at some other
vertex w, there are also two paths between u and w. Replace v with w.

Since this operation shortens the length of these paths, we can perform this until the
two paths between u and v are disjoint. The combination of two disjoint paths is a cycle.
8.25 Construct a walk in the following way. First, pick an arbitrary vertex. Now, repeatedly
walk along an arbitrary edge, except for walking backwards to the vertex you just came
from. Since the graph has no cycles, you never get back to a previously visited vertex. On
the other hand, the walk must end since there is a finite number of vertices. This means
that you at some point must reach a vertex that only had a single edge - the one we walked
to get to the vertex.

This proves that there is at least one leaf. To find the other, perform the same procedure
but start from the leaf.

8.26 This is true for all graphs on 1 vertices. Assume that this holds for all trees with k
vertices. A tree with k + 1 vertices must have a some leaf. Removing this leaf from the
tree removes a single vertex and edge, but results in a tree on k vertices with, by inductive
assumption, k — 1 edges. This means that the original tree had k vertices.

8.27 We enter a vertex exactly n — 1 times and visit all # vertices. Thus, the edges used
when entering a vertex during the search all form a spanning tree.

8.29 Assume that the DFS from c reaches another vertex v that was marked as invalid.

417

SOLUTIONS

Why did the DFS that marked v as invalid not also mark ¢ as invalid? There must have
been something that prevented it from passing the edge from v to the vertex closer to p
— let’s call it u. This can only happen if 4 and v formed a parent-child constraint, so that
v was actually the start of the DFS. If this is the case, then all other vertices in reachable
from v must also have been marked as invalid by that DFS.

8.31 The ordering can be constructed one vertex at a time. If a vertex has no outgoing
edges (i.e. dependencies), it can be put first in the ordering. All incoming edges to it can
then be removed and the remainder of the ordering constructed iteratively in the same
way. If the graph has no cycles, there must be a vertex without an outgoing edge. Choose
a random vertex and repeatedly follow an outgoing edge from it. Two things can happen.
Either we repeat this infinitely, and so we must revisit a vertex — there is a cycle, which
we assumed to be false. The only other possibility is that the process ends because we did
indeed find a vertex without an outgoing edge.

8.33 Clearly, no cycle of length 1 or 2 exists. Let the shortest cycle have length at least 4,
and the first vertices on the cycle be p, p2, p3, - - ., p1. By assumption, p; — ps is an edge.
Otherwise, p; = p, = ps — p1 is a cycle of length 3. But then py, p3,. .., p; is a shorter
cycle. Thus the shortest cycle could not have length at least 4, so it must have been 3.

CHAPTER 9

9.3 For two times hy, m; and h,, m,, the difference between their angles is 300(h; — hy) +
5(my — my) — 60(m; — my) =300(h; — hy) — 55(m; — my). If hy = hy, then m; = m, if
this difference is 0. Otherwise, the second term must also be a multiple of 300 to make
the difference 0. If 55(m; — m,) is a multiple of 300, m; — m, must be a multiple of 60,
which is only possible if they are equal. But if they are equal, so must the hours.

Thus, no two times can have the same angle.
9.5 A single call is made for at = 0. This call makes two calls with at = 1, and these two in
turn make two calls with at = 2, and so on. This means that there will be 2% calls for every
value of at from 0 to N, i.e. 2° + --- + 2N = 2N+l _ 1 cqlls in total.
9.7 Assume that we in a connected graph have placed at least one drone, but all remaining
intersections have four neighbors. Then, none of these intersections can be neighbors
with any vertex we have removed so far. This means that the set of intersections removed
and the set of intersections remaining are actually disconnected, to the contrary of our
assumption of connectedness.

CHAPTER 10

10.2 For T =12 the optimal solution is 6 + 6 (two coins), but the greedy solution chooses
7+1+1+1+1+1(6 coins).
10.3

1. A shelf of width 7 with two books of width 3 and four books of width 2.

418

SOLUTIONS

2. Letw; =wy =wy =land w3 = wy = ws = wg = 0.

3. A counterexampleisR=2,C=6,a=5b=4,c=3.
10.6

1. Let a; and a; be the smallest and largest elements. By the triangle inequality (|a| +
|b| > |a + b), the terms |a; — ;| + - + |aj1 — aj| together equal at least |a; — a;],
so the full sum can not be smaller. However, when all the numbers are sorted, the
entire sum evaluates to the same value, so it must be optimal.

2. For example, 3,0,1, 2.

3. For example, 1,3,4,2, 0.

10.8 Since we choose the shortest interval, we know that it can’t overlap three intervals in
the optimal solution. If it did, it would have to contain one of them in its entirety, but then
we haven't picked the shortest interval. Thus, for each shortest interval we pick, at most
two optimal intervals are removed, so we pick at least half as many as in the best solution.
10.9 Assume that we have chosen a number of intervals according to this strategy, and
that it so far corresponds to an optimal solution, but that adding the next interval was
not optimal. It can not be sub-optimal due to the interval itself not belonging in an
optimal solution. If it does not, then look at whatever interval was placed in its place in
the designated subset. Without loss of generality, we can exchange that other interval for
the one we think is optimal, and not get a worse solution.

Let the subset we want to place the interval in (call it A) have r, as its right endpoint,
and the optimal subset (call it B) have r}, as its right endpoint. There must be some other
interval we placed next in A instead (otherwise we just insert our interval there). It must
also fit in B (since by assumption 7, > rp). Thus, we can swap these two intervals and get
a solution that is not worse.

10.10

1. If we so far have scheduled intervals up to r, it is irrelevant which of the intervals
of minimum " > r that we choose, since the left endpoint of the chosen interval is
never used.

2. Tings are slightly more subtle in this case. The key is that no matter the ordering of
the ties for a given right endpoint, the exact same subsets will be chosen to place
an interval in (but possibly in different orders, and with different intervals to be
inserted). Assume that the subsets chosen for some arbitrary ordering have right
endpoints r; > r, > --+ > r,,, and that an other ordering chose different subsets;
instead of ry, the k’th largest subset has right endpoint .

We can not have that r > r. If I, . . ., [are the left endpoints of the intervals added
to those k subsets with greatest r;, they must all have been placed in the subsets

419

SOLUTIONS

. ..>"k-1. If one of them weren’t, an attempt would have been made to place it
into the unused ry - a contradiction to that r > r. Can r < r then? No - the proof
is entirely symmetrical, so we can swap the role of the two orderings so that r > ry
again.

10.11 Assume that the optimal solution is K. The algorithm will then use exactly K subsets,
since the behavior of the previous solution where we preallocate K subsets is identical to
its behavior where we add a new subset when we can't insert an interval into an existing
subset. This is true since the algorithm always tries to choose the “most full” subset first.
Since the behavior is identical, the algorithm will terminate using exactly K subsets.
10.13 The algorithm almost works as-is simply by treating L as meaning “the rightmost
point to have been covered so far”. The only problem is that if L = R, we would produce
an empty covered, even though the point L itself has not been covered. This can be fixed
by updating the check on line 4 to read “while L < R or the cover is empty”.

10.16 Call the first beam to exit at the wrong row A, and the beam entering through A’s
intended exit hole B. The beam B hits exactly one mirror and exits downward. Otherwise,
it would be hitting a mirror vertically that some other processed beam is already reflecting
against. Call the beam whose processing placed that particular mirror C.

C

A

Beams B and C meet in a point and exit on different sides of A, so they cut A of from any
possible exit forcing A to cross at least one of them. If it crosses B, the algorithm would
add a mirror at the point of crossing to force the beam upwards and make it exit correctly.

The other option is that it crosses C somewhere while going upwards in some given
column. Since A is traveling upwards, we must have added a mirror somewhere because
there was another mirror further up in the column. To actually cross C, this mirror would
have to be above the line C. Since C was itself not directed upwards at this point (adding a
mirror and preventing the beams from crossing), it must be so that C was actually on its

420

SOLUTIONS

way to leave the grid at the correct row. This is impossible, since we know that the point
where A first cross C must be before C is reflected upwards at the point where it touches
B (and thus before it reaches its correct row of exit).

One more possibility exists, demonstrated in the figure. A can go upwards not due
to a mirror, but because it entered the grid from below. Since all beams exiting upwards
does so correctly, there is some mirror in this column preventing A from leaving. By the
same reasoning as before, this mirror must actually be placed at a lower point than where
A would cross C.

10.17

1. For example the 1 x 3 case where the first three beams should exit horizontally in
order, and the last beam exit to the right.

2. We assume that whenever a beam is going vertically, the beam supposed to exit
through that column has already done so (and thus placed a mirror in the column).
This assumption is not true when going right-to-left. Several crucial parts of the
proof depend on this fact.

CHAPTER 11
11.2

1. Yes — there are many recursion paths that lead to the same argument i. In fact, when
calling Fibonacci(n) the number of times Fibonacci(i) is called is the (n — i)’th
Fibonacci number.

2. No. The use of the seen array guarantees that the function is only called once for
each vertex in the graph.

3. Yes. This is most obvious when e is a power of two. There are then 2 calls with [§], 4
to [£] and so on. In total, there are @ (e) calls. When e is not a power of two, there
are still only at most 2log, (e) possible values of e.

11.3 The longest path answers[i] is always 1 higher than answers[next[i]]. You can find
next[i] by checking if this relation holds for each vertex u that i has an out-edge to.

11.5 Whenever Simone performs the short sell (the case C(i) = 100P; — K), she may
already have some profit earned from her earlier sells that should be added to the amount.
This means that 100p — K in the code should be 100p — K + profit.

11.7 Otherwise the function would be invoked with the same parameters, causing an
infinite recursion.

11.13 No. The base case of not needing to build an exit on a vertex that also have no
children that need one is handled by line 4 (if d < D), where the cost evaluates to 0.
11.14 This represents not having an exit further up that can be used. When called with
d = D + 1, the recursive call on line 4 would not trigger, so no calls with higher d will be
made.

421

SOLUTIONS

11.16 For each iteration of i, only best[i] and best[i — 1] are used. Keep only those two
arrays in memory at all times.

11.20 The recurrence instead becomes LNDS(i) = 1+ max,»p[, *. In the code, we
would translate this to the equivalent LNDS(i) = ming,p[,] x. The C++ change is that the
lower_bound should be on the pair make_pair(s[i], i) instead. Since all existing entries
with the same s[i] have a lower i, this guarantees that we find the first greater element
instead.

11.22 Keep a 2" array marking all the subsets that are possible extensions. For each of
the k subsets, mark them in the array. Now, go through the array in order of descending
number of elements in the subsets. If the subset s is marked true, then for each x € s mark
the set s — x true as well.

CHAPTER 12

12.1 We have that 4” —1=2*" —1= (2" +1)(2" - 1) (difference of squares). Among the
three consecutive integers 2" —1, 2", and 2" + 1, at least one must be divisible by 3, but this
can clearly not be 2". Thus one of the others must be, but they are both factors of 4" — 1,
which then too is divisible by 3.

12.3 After i steps, there are 2¥~ integers left. Each step takes linear time in the number of
integers. The complexity is then ®(2F) + @(2K1) + ... = @(2F).

12.5 Since both arrays are sorted, the smallest element in each array is first. Clearly the
smallest element of the combined array must be the smallest of those two elements. Hence
we can repeatedly find the next element of the combined array by choosing and removing
the smaller of the two smallest elements of the partial arrays. When one array runs out of
elements the remaining elements of the other array are appended to the combined array.
12.7 For the k’th element, denote the index of the previous and the next occurrence of
it in the array by by and fi (or —oo, oo if there are none). Answering the given query
is then as easy as checking whether by, or fy lies in the interval. These numbers can be
precomputed in linear time. Iterate through the array one element at a time and keep a
hashmap with the index of the last occurrence of each element. Then by is simply the
value in the hashmap for the k’th element. Computing f is done in an analogous manner.
12.16 By adding an edge {u, v}, all edges on the path from u to v in the original tree
will be on a cycle. Let u’ be any of the leaves in the subtree of u (going away from v),
and v’ the corresponding leaf for v. The path between u’ and v’ goes through at least
all the edges between u and v, so adding the edge {u’, v’} instead does not change the
two-connectedness of the graph.

12.17 Pick an arbitary vertex in the tree as root of the tree. If it has no subtree with a strict
majority of the leaves, you've found c. Otherwise, go into the subtree that has a majority.
You never move back up along an edge you once traversed down into: for any edge, each
leaf lies either above or below the edge, so only one side has a strict majority. There’s a
finite number of vertices, so the algorithm must terminate at some point because it found

422

SOLUTIONS

c. The only remaining detail is to memoize the leaf counts for the subtrees to get a linear
rather than quadratic time complexity.

12.18 Assume that 1 and v are two centroids. Then, the subtree of u that v lies in has
at most % vertices. A consequence is that the other subtrees has at least % vertices
altogether. However, all those other subtrees and u itself lies in the same subtree of v,
which thus has size at least % which is strictly more than half.

12.19 Ask what the optimal meeting point between a, b and c is. If b and ¢ are in different
subtrees, then clearly a lies on the path between b and c, and thus it is the optimal meeting
point. If they are in the same subtree, a can never be the optimal meeting point, since the
immediate child of a in that subtree is a better meeting point.

12.20 Let v be the optimal meeting point. No two of 4, b, c lie on the other side of the
same adjacent edge of v, as moving along that edge decreases the sum of the distances.
Thus b and ¢ must lie in the subtree of v (possibly v € {a, b, c}), or else v’s parent would
be a better meeting point. If b and c lie in different subtrees of v, then v is their LCA. If
they lie in the same subtree, v is not the optimal meeting point since moving down that
subtree decreases the sum of the distances, unless v € {b, c}, but then v is also the LCA of
band c.

12.21 Since lca(b, ¢) is an ancestor of b and c it can never be further away from a than
the closest of b and c. The remaining case is that b, ¢ and lca(b, ¢) are all equally far from
a. Note that all ancestors of b have different distances from a, so if Ica(b, c) is equally far
from a as b is, we have Ica(b, ¢) = b, and similarly lca(b, ¢) = ¢, so that b = c.

12.22 If (and only if) a, b and ¢ line on a path are any of them the optimal meeting point.
Thus, whenever b or ¢ is the optimal meeting point, we know which one of them is an
ancestor of the other. With this information there are many ways of reconstructing the

tree in quadratic time.

€L
I+1
and the probability it is not % The probability that fewer than % leaves are picked therefore

12.23 If there are / leaves remaining, the probability that yet another leaf is picked is

equals

k
2

1 k1 k k-1 1 Tk-iv1) 1 k11
+ — +ot | [[—— | = .
k+1 k+1k k+1 k k-1 k—i+2 % 2k+1 2

i=1

12.24 Let v be the optimal meeting point. At least two of x, y, z must lie in the subtree
rooted at v, or else v’s parent would be a better meeting point (or v € {x, y,z}, but then
v is LCA of itself and whichever of x, y, z is its descendant). If those two lie in different
subtrees of v, then v is their LCA. If they lie in the same subtree of v, then the root of that
subtree would be a better meeting point.

12.25 Let a be fixed and b be a random vertex. The possible LCA’s are then exactly the
ancestors of a. Let the subtrees rooted at those ancestors have the sizes s; < sp-+- < 541 <
sk = N. We get the subtree s; exactly when b belongs to the subtree, which happens

423

SOLUTIONS

$2—$1

with probability 3. Similarly, the probability that s, is chosen becomes ", and so
on. Summing probabilities, we see that the subtree has size at most s; < gN < s;4; with
si+(s2=s1)+(s3=52) +-=+(s5,=5,-1) - 3o« aN _

probability 5 i< 47 =
every fixed g, it also holds for a random choice of a.

q. Since this inequality holds for

12.26 The majority element occurs some k > & times. After removing two distinct
elements, it occurs at least k — 1 > %, which is strictly more than half of the remaining
N -2 elements.

12.27 Let A contain only two different values, each occurring ' times. Exchanging the
positions of all elements of the different values also causes Majority to change its return
value.

12.28 Iterate through all vertices in the tree. Instead of checking a = el we want to check
if a and el are vertices of the same subtree, which has been described earlier.

12.30 Each path that passes through the v can be decomposed into two subpaths that
has one of their ends in two different subtrees and their other ends being v. For each
subtree, perform a DFS from v into that subtree to find the lengths and number of edges of
each path that ends in that subtree. Now iterate through each of the subtrees, and keep a
hashmap mapping path lengths to the smallest number of edges for each path in one of the
previous subtrees. When finding a path of length K in a subtree, we check the hashmap
for a path of length K — K’ in one of the other subtrees to get the best path with length K.

CHAPTER 13

13.6 Consider the old plan with the edge e from the new plan added. Since this graph
now contains N edges, it is no longer a tree and thus contains a cycle. At least one of the
edges in this cycle must belong only to the old plan, since the new plan doesn’t contain a
cycle. Removing an edge that lies on a cycle never disconnects a graph, so the other N -1
edges must still form a single connected tree.

13.11 We need to compute two different kinds of prefixes. First, the normal ones: ag » a; x
.-+ * a;. Since the operation is not commutative, we also need to compute the prefixes
a,-__ll -+ x @y * ag in order to remove the values up to a;_; (here, x ' denotes the inverse
element of x).

CHAPTER 14

14.1 Assume to the contrary that there is a shorter path P from s to v;. The path P —
Vis1 = -+ = vy is thus shorter than the original path, so the original path can not have
been a shortest one.

14.2 No, we never assumed that edges were undirected. Dijkstra’s algorithm works per-
fectly fine even with directed edges.

14.6 Consider the counter-example path P = s - v; — -+ — v = v with the fewest
number of edges. Then s - v; — --- > v4_; is a shortest path to v,_; and have length

424

SOLUTIONS

d(s,vk-1). Let the edge vx_; — v} have weight w. Since we assumed P was not a shortest
path, we must have that d(s, vx) < d(s,vx_;) + w. This contradicts that vi_; — v is part
of some shortest path since there is a shorter path from s to v not including this edge.
14.7 Ifdy(t) = ds(u) + w+d;(v), the shortest path from s to u, followed by u — v, ending
with the shortest path from v to ¢ has the same distance as a shortest path from s to .

Conversely, if there is a shortest (s — t)-path including the edge u — v, the paths from
s to u and from v to ¢t must be a shortest paths, or the (s — t)-path could be shortened by
replacing one of those subpaths with a shorter path. Thus the length of the path must be
ds(u) +w+ d;(v) and equal to d,(t) since this was a shortest (s — ¢)-path.

14.9 Consider a trip between two stations a and b, neither of which are the first or the
last, where a is closer to the first station. Replace the trip by three trips: from a to the last
station, back to the first station, and then to b. These three trips have the same waste as
the trip directly from a to b.

14.12 The condition is indeed necessary. If D(|V| -1, x) = D(|V|, x) for each x that can
reach v, none of those values ever change. To prove that formally, let k > | V| be the smallest
integer such that D(k,b) < D(k -1,b) = D(|V|-1,b) for some b that can reach v. This
happens only when there’s an edge a — b where D(k - 1,b) > D(k - 1,a) + w(a, b),
implying D(|V|,b) = D(|V|-1,b) > D(|V|-1,a) + w(a,b), a contradiction.

To see that it is also sufficient, consider a walk with | V| edges to v of length D(|V|,v).
Since it uses |V| edges, it must contain a cycle. If the cycle has a non-negative length, it
could be removed to obtain a walk of length < D(|V|,v) using fewer edges, contradicting
D(|V|-1,v) > D(|V],v). Thus the walk contains a negative length cycle. Traversing it an
arbitrary number of times results in a walk to v of arbitrarily short distance.

14.13

1. Consider a cycle vy — --- - v, — v; in the path reconstruction graph. Assume
WLOG that v,, — v, is the last edge that decreased a distance in the cycle. When
v; = v, was used to decrease the distance to v,, v; had a higher distance than it does
now (since it was decreased most recently), so it must be possible to use that edge
again to decrease the distance to v3. But by the same reasoning we must now be able
to decrease the distances to v3, v4, . . ., all the way until we decrease the distance to
v, and finally v; once more. Since traversing the cycle lowered the distance to vy, it
has negative length.

2. We prove the contrapositive instead: if the path reconstruction graph lacks cycles,
the graph lacks negative length cycles. If the graph is a DAG it must be a rooted
tree in s, since every other vertex has exactly a single in-edge by construction of
the graph. This means that D(s) = 0 has remained unchanged through the entire
algorithm.

Now, consider a path s = v; - v, —» --- - v,, in the path reconstruction tree. We

425

SOLUTIONS

prove by induction on the length # on such paths that
D(Vn) = W(Vl - VZ) +--t W(Vn—l - Vn)-

This is trivially true for # = 1 since D(s) = 0.

Assume that equality holds for a path up to v, that has an edge v, - v,,1; in the
path reconstruction tree. Since the path has n —1 < |V| -1 edges, the value D(v,,)
was reached by at most | V| — 1 Bellman-Ford iterations, so after |V |iterations it must
hold that D(v,,41) < D(v,,) + w(v, = v,41). Because v,, — v,,41 was the last edge to
relax v, we also have equality, implying that the statement holds true also for the
path to v,.,;. By induction, the equality holds for path in the path reconstruction
tree.

We have proved that after | V| iterations of Bellman-Ford, each distance D(v) is
exactly the length of the (s—v)-path in the path reconstruction tree. These distances
must also have been found already after |V| - 1 iterations, so all distances have
converged. As we've shown earlier, this implies that there are no arbitrarily short
distances, i.e. the graph lacks negative cycles.

14.15

1. Let k be the highest-numbered vertex (except possibly v) on the cycle. Splitting the
cycle on k and v gives us a shortest (v — k)-path and a (k — v)-path with lengths
D(v,k,k —1) + D(k,v,k —1) < 0. Thus D(v,v) < D(v,v,k) < D(v,k, k —1) +
D(k,v,k-1)<0.

2. During execution D(i, j, k) is always the length of a walk from i to j.

14.16 For each pair (i, j), keep track of the second-to-last vertex on the path shortest
(i — j)-path. Initially, that is i if i — j is an edge, as well as i for the pair (i, i). Whenever
a shorter path is found through an intermediate vertex k, the new second-to-last vertex is
that of the shortest (k — j)-path. These values can then be used to backtrack the full path
one vertex at a time.

14.18 Assume that we arrive to a non-v vertex the i’th time. Then we have used i incoming
edges and i — 1 outgoing edges, so by assumption there is at least one more outgoing edge
that can be followed. Since the walk must eventually end (there are finitely many edges), it
can thus only do so at v.

14.19 Since exactly one incoming and outgoing edge are used each time a vertex p; is
visited, a vertex on p; with an incoming edge must also have an outgoing edge. Split the
graph into two sets of vertices P and Q containing those vertices on the walk and not on
the walk, respectively. The graph is weakly connected, so there must exist at least one edge
between P and Q. Either it’s outgoing from some p;, or it's incoming, but that in turn also
implies that it has an outgoing edge.

426

SOLUTIONS

14.20 Pretend that you've added a new vertex r and two edges r — s and t — r, so that all
vertices have equal in-degree and out-degree. Running the Eulerian walk algorithm from
r is equivalent to starting it from s and ending at ¢ in the original graph since the first and
last edge by necessity are r - s and t — r.

14.21 The only time we use the directedness of the edges in the algorithm is to conclude
that whenever we arrive at a vertex, it has either no unused incoming edges, or at least
one unused outgoing edge. This statement is vacuously true since “incoming edges” don’t
exist at all in undirected graphs.

14.23 Since the in-degree and out-degree of all vertices are equal, traversing the outgoing
spanning tree edge from some vertex implies all other adjacent edges were traversed. Next,
assume that all edges adjacent to some vertex u have been traversed during the walk. In
particular, all edges in the spanning tree pointing to u were then traversed, so in turn all
edges adjacent to u’s children (in the spanning tree) must have been visited. Applying
this reasoning recursively, all edges adjacent to a vertex in u’s subtree must have been
traversed.

Finally, as we have shown earlier, the walk will terminate in the same vertex that it
starts from, i.e. v, and only do so once all its adjacent edges have been visited. But then
all edges adjacent to a vertex in v’s subtree must have been visited. As v is the root of
the spanning tree, its subtree is the entire graph, so all edges in the graph were indeed
traversed, making the walk Eulerian.

14.26 Perform a DFS starting at the root of a normal spanning tree, always prioritizing to
traverse edges that are part of the tree. Now, consider the first edge {u, v} that is not part
of the normal spanning tree, where v is an ancestor of u, that the DFS adds to the DFS tree.
Clearly the edge can't have been added when going from u to v, since the only way the
DFS can have gotten to u is by first going to v. However, since the DFS first picks edges
that are part of the normal spanning tree, it will follow the path from v to u in the tree
before traversing the edge {v, u}. This contradicts the assumption that any edge {u, v}
not part of the spanning tree was added to the DFS tree, so the DFS did indeed produce
the normal spanning tree.

14.28 Assume for the sake of contradiction that two biconnected components share the
vertices u, v. If any vertex is removed, both components are still individually connected
since they were biconnected, and since at least one of # and v remains and are in both
components, they are also still connected to each other. The union of the components are
thus also biconnected, which is impossible by definition since they were not maximal.
14.29 After removing a single vertex from a cycle, the remaining vertices all lie on a path,
so they are still connected. Thus a cycle is always biconnected, so it must be part of a
common biconnected component.

14.30

1. Removing an edge {u, v} disconnects a graph if and only if there is no other path
from u to v. This is equivalent to {u, v} being part of a cycle: if a path exists, it can

427

SOLUTIONS

be extended to form a cycle, and if {u, v} is on a cycle, the rest of the cycle is a path
between u and v. A bridge can thus be defined as an edge that isn’t part of any cycle.
By the previous subexercise, all edges on a cycle is part of the same biconnected
component, so a non-bridge edge {u, v} — guaranteed to lie on cycle - can’t be a
maximal biconnected set.

Conversely, let {u, v} be an edge in a biconnected component that contains at least
one more vertex x. By definition removing u doesn’t disconnect the component,
so there’s a path between v and x that doesn’t use the edge {u, v}. Similarly, there
is a path between v and x that doesn’t pass through {u, v}. Consequently u and v
are connected by some path except the edge {u, v}, so {u, v} does actually lie on a
cycle, and thus cannot be a bridge.

2. Let v be shared by different two biconnected components A and B. Pick a neighbor
a and b of v in A and B respectively. If v isn’t a cutvertex, there’s a path between
a and b after removing v, so we can form a cycle by adding the edges {a,v} and
{v, b} to the path. All vertices on a cycle lie are part of a biconnected component, so
a, v and b all belong to some component C. Distinct biconnected components can’t
have more than one vertex in common, so we must have A = C = B, contradicting
that v wasn’t a cutvertex.

For the other direction, let v be a cutvertex and assume that it’s only part of a single
biconnected component V. Since v is a cutvertex, removing it causes some vertices
a and b to become disconnected. In the original graph, consider the paths from a
tovand b to v, letting {a’, v} and {b’, v} be the last edges on the paths. Remember
that both ends of every edge are always in the same biconnected component, so
since v only belongs to V, we know that a’ and b’ must belong to V as well. V
is a biconnected component though, so after removing v there is still some path
between a’ and b’ by definition, which by extension givesusapatha — a’ - b’ - b,
a contradiction. Thus, the assumption that v wasn’t shared by two biconnected
components was false.

CHAPTER 15

CHAPTER 16

16.4 The first player wins; after placing a coin in the center of the table on their first move,
they can rotate their opponent’s move 180° every time.

16.7 Let W(n) be the worst-case number of terminal states we must check when recursing
to recurse into a winning position with n moves left, and L(n) the same but for a losing
position. Losing positions must recurse into two winning positions, so L(n) = 2W(n -1).
For winning positions, the worst case is one winning and one losing move. If both moves
were winning, wed have to only look at a single move which would give the worst-case

428

SOLUTIONS

W(n) = L(n —1). Having one losing move as well is strictly better, since we get the
equality W(n) = L(n—1) + 0.5W (n —1). Substituting L(n) with the first equality yields
W(n) =0.5W(n 1) +2W(n - 2). Solving the quadratic equation x* = 0.5x + 2 gives
X = #, from which the result follows.

16.8 Assume by induction that all positions with DTW < #n were processed to the queue in
order. We then show that processing all positions with DTW = n adds exactly the positions
with DTW = n + 1 to the queue. If a losing position has DTW # + 1, all moves have DTW
at most 7, and at least one move exactly DTW #. Thus, it will reach the movesLeft[u] = 0
condition for the first time when processing the DTW n positions and be added to the
queue now. If a winning position has DTW n + 1, there is a losing position with DTW n
that we can reach from the position. Since we process all such losing positions correctly
by assumption, all these winning positions will be added to the queue now too. Proving
that all positions that are added have the correct DTW is similar.

CHAPTER 17

17.1 7 only has the trivial divisors 1 and 7. 18 has the divisors 1,2, 3,6, 9,18. 39 has the
divisors 1, 3,13, 39.

17.3 Each divisor d can be paired with the corresponding divisor
But then d* = n, so n is a perfect square. For the other direction, it’s enough to note that
(\/n,+/n) is indeed a divisor pair exactly when 7 is a perfect square.

except when d = .

17.5 By definition, there exists ¢, g’ such that a = bg and b = ¢q’. Then a = (¢q')q =
c(q'q),soc|a.

17.6 By definition there are ¢, ¢ such that b = agand ¢ = aq’. Then b + ¢ = aq + aq’ =
a(q+q’),sothata|b+c.

17.8 The complexity would be the same:

> ﬁznlnf:®(nlnn).
is\/ﬁl

17.12 All non-primes below N* must have a prime divisor below N, so primality can be
checked by testing divisibility by all of them.

17.14 If there are two of more primes left, they must both be greater than i, so the algorithm
will still find them. The worst-case complexity is unchanged, since for prime N no prime
is ever factored out.

17.16 There are | % | numbers up to m that are divisible by n (every n’th). Generally, there
are [p—"}J numbers divisible by the prime p k times. The formula follows from counting
this for each k.

1720 (a,0) = aand (a, a) = a both follow from (a, b) < max(a, b). (a,b) < max(a,b)
follows from that if d | a, then d < a.

429

SOLUTIONS

For the fourth equation, let d = (a,b). Then c¢d | ac and cd | be, so cd | (ac, bc) so
(ac,bc) = cdn for some n. But if cdn | ac and cdn | bc we have dn | aand dn | b so
dn | (a,b) meaning n =1, and (ac,bc) =cd =c- (a,b).

The fifth follows directly from the transitivity of divisibility.

The set of divisors of ac is exactly the set of a’c’ where a’ | a and ¢’ | c. The greatest
divisor
17.25 First, divide the equation by 4 to get 6x + 11y = 1. Let [x, y] = 6x + 11y. Then

(6,11) = ([1,0],[0,1]) = (6, 11mod 6) =

(6,11-1-6) =([1,0],[0,1] - [L,0]) =

(6,5) = ([1,0], [-1,1]) = (6mod5,5) =
(6-5,5) = ([1,0] - [-L1],[-1.1]) =

(1,5) = ([2.-1], [-1,1]) = (1,5mod1) =
(1L5-5) = ([2, -1} [-L.1] = 5[2,-1]) =

(1,0) = ([2,-1], [-11, 6])

so x =2 and y = —1 gives a solution.
17.26 Let x1, 1 be a solution to ax + by = 1. Then cx;, ¢y, is a solution to ax + by = c. We
can use the same argument as for ¢ = (a, b) to show that any solution must be of the form
(cx1 + kb, cy) — ka).
17.27 Clearly we must have that (a, b)|c. Otherwise the LHS would have a divisor that
the RHS does not. We can then divide the equation by (a, b) so that (a,b) = 1. Then the
equation is also solvable, since we can find x, y such that ax + by = 1.
17.29 It’s equivalent to n | a.
17.30 Write s as a decimal number on the form d,,d,,_; ... ddy, so thats = 3°,_ 10" - d,.
Since 10 =1 (mod 9),10" =1 (mod 9) as well. Thens = ¥; 410’ -d; =1-d; (mod 9) =
s(d).
17.37 For each integer d | n, let’s count the solutions to d = gcd(n, i). Let i = dk. By the
GCD laws, we know that % is coprime to é = k. Furthermore, since 1 < dk < n we have
1< k < 7. But this is exactly what ¢ (%) counts. Thus, each integer 1 < i < n is counted
once over all the d, so that n = ¥ ;,, ¢(). By symmetry,

n
> ¢(5) =2 9(d)
d|n d|n

which proves the statement.

430

SOLUTIONS

CHAPTER 18

18.1 Each element can be in either A, B, or neither of the sets. The choice for each element
is independent, so by the multiplication principle there are 3" such pairs.
18.7 Each placement is a permutation of the people, so there’s 8! ways.

A cyclically unique arrangement can be rotated in 8 ways, so there must be £ = 7!
such arrangements.
18.11 Assume that [+ ords. Let ordrm = gl + r with 0 < r < [. If a is on the cycle, we
know that 79*"(a) = n"(a) since 7' (a) = a. By the definition of the cycle decomposition,
1 is the smallest positive integer for which 7'(a) = a. But n"(a) =aand0<r <l a
contradiction, so the assumption that [+ ordnw (equivalent to r # 0 was false).
18.12 Let a be an element on the cycle and let m = W' Note that 7" (a) = 7™ (a) if
and only if n = m (mod I), so if (7¥)'(a) = n'%(a) = a then iK = 0 (mod I). This is
equivalent to [| iK, which also means

I T K
ged(L,K) ' ged(l,K)'
By definition o d(ll)) and o d(Kl T are coprime, so by the cancellation law

l

.

ged(1,K)
The smallest positive such i is gchl,K), so this is also the order of a (and its cycle length)
in 72X,
Since this applies to every element in cycle of length I, we have —— = gcd(1, K)

ged(LK)
such cycles.

18.14 We want to prove
(k=)
k)" Mk-1)
We claim that both sides count the number of ways to choose a k-person committee, of
which one person is chair. The LHS counts the number of such committees, multiplied
by the number of choices for who should be the chair. The RHS counts the number of

possible chairs, and then selects the remaining k — 1 people in the committee.
18.15

1. No, they are exactly the same with regards to overflows. Note that both of them,
before dividing by the final k, need to represent k(;) This is also the greatest
intermediate result that must be stored.

2. The binomial coefficients are (}), (}),.... The identity we get is

431

SOLUTIONS

18.17

so we want to prove that

(o=, oo

This represent two ways to choose a committee with (i + 1) people and a chair. The
RHS we saw in the previous exercise, but the LHS is different. First we choose
the regular i members of the committee, and then among the n — i people left, we
choose the chair.

Both sides count k-subsets of an n-set. The last of the #n elements either is in that

subset or not. In the first case, k — 1 elements must be chosen among the remaining n — 1
elements. In the second case, k elements must be chosen among them instead. These two
cases sum to the RHS.

18.18

1.

2.

18.19

The LHS counts all the subsets of an #n-set, one size at a time.

The sum adds the number of even-sized subsets of an n-set S, and removes the
number of odd-sized. Pick any element a from the #n-set. Now, pair up each subset
T c S where a ¢ T with T U {a}. Each pair contains exactly one even-sized and
one odd-sized subset, so the number of each type is the same.

. The LHS counts the number of subsets B of all subsets A of an n-set S. Since

B ¢ A ¢ B, each element has three choices. Either it’s in S but not A, or it’s in A but
not B, or it’s in B.

. The RHS counts (k + 1)-subsets of an (7 + 1)-set. The LHS does the same. Let i + 1

be the index of the last element chosen in the subset. Then, there are (Ii) ways to
choose the remaining k. The sum is over all valid choices of i.

It’s not hard to prove combinatorially that the central binomial coefficients are also

the greatest. Since the sum of all n + 1 binomial coefficients (Z) sum to 2", the greatest
must be at least 2~ = @(2-).
n+l n

18.20 The formula for the binomial coefficients gives us that

(Z) - %(” —k+1)(n-k+2)-n

By substituting n = k + i, this equals

(:) = %(i+1)(1’ +2)(i+k)

which is a polynomial in i of degree k, so (Z) = @(n*) since i = n — k = O(n) for fixed k.
18.22 The RHS counts the number of Dyck paths in an # x n Dyck path. Note that a Dyck
path in that grid always crosses the top-left to bottom-right diagonal after # steps. The

432

SOLUTIONS

path can be split up into two parts: one from the start to the diagonal crossing, and one
from the crossing to the end. Assume that the crossing is in the i’th column. The first part
is then a Dyck path in a i x (n — i) grid, the and second part a path ina (n - i) x i grid.
There are (7)(,") such paths. Now we take the sum over all i to get the LHS.

18.25 Each of the N rectangles must have as its top-right corner one of the steps of the
staircase. Consider the topmost rectangle in the first column. If this has height k, none of
the topmost rectangles in the next k — 1 columns can extend further down than the first
rectangle, or else wed form a rectangle with a top-right corner that’s not one of the steps
of the staircase. This means that the brackets are nested correctly, since each bracket pair
includes within it fewer bracket pairs than the bracket pair that it’s nested in itself.

Now consider a valid bracket sequence. Assume that the first bracket pair consists
of k — 1 nested brackets, so that the height of the first rectangle is k. We have two other
valid bracket sequences: the k — 1 brackets inside the first, as well as the N — k that comes
after it. By recursively constructing a staircases for these two brackets and placing them at
the right place, there’s only one issue - there’s nothing that fills the N - k squares below
the topmost rectangle in the first column. To fix this, extend all the rectangles in the first

column of the sub-staircase immediately beneath it starting in (k + 1)’th column k steps
to the left.

Figure B.a: The combination of the bracket sequences (()) and (()) into (())(()).

This can be done because that staircase was constructed independently of everything else
as the staircase of the last N — k bracket pairs, so it has no rectangle extending into the
rectangle already in the first column.

18.27 Let A, B and C be the sets of the integers divisible by 2, 3 and 5. We seek
[AUBUC|=|A|+|B|+|C|-|AnB|-|AnC|-|BnC|+|AnBnC|.

We have |A| = l@J =500, |B| = [%] = 333,|C| = [%%] = 200. Since 2, 3 and 5 are
relatively prime, the intersections of these sets are also easy to compute: [An B| = [122] =
166,]ANn C| = [19%°] = 100, [Bn C| = [192°] = 66, and finally [An BN C| = | 192 | = 33.
The answer is then 500 + 333 + 200 — 166 — 100 — 66 + 33 = 734.

18.28 Assume that an element is present in k of the elements. It’s then counted (’1‘) times
in the first sum, (’;) times in the second, (’3‘) in the third and so on. In total, it’s counted

433

SOLUTIONS

Zi;l(—l)"“(llf) times. From a previous exercise we know that Zfzo(—l)i(};) = 0. But

S (3) =5 ()« 1) oo

so each element is counted exactly once.

18.31 Assume that no stack has more coins than the other stacks combined. Then there
are two distinct stacks with coins, so a move is possible (unless there are no more coins).
Remove one coin from the two largest stacks. If the largest stack is still the largest, can’t
have more coins than the other stacks since one was removed from each. If another stack
became the largest, it has at most one more coin than previously largest stack. If it has
more coins than all the other coins, there must not be any non-empty third stack, but this
is not possible since the total number of coins would then be odd. Thus, the invariant
holds after each move, and a move is always possible unless there are no remaining coins.
18.32 Let i < j be the positions of the swapped elements. Any inversion not including i or
j is unchanged, and any inversion including them but where the other element is to the
left of i or to the right of j is also unchanged.

Consider an element at a position i < k < j. Either (i, k) is an inversion or not. In the
first case an inversion is removed, while in the second case an inversion is added. The
same applies for (k, j). No matter what the case is, the number of inversions changes with
only -2, 0 or 2, leaving the parity unchanged.

Finally, we have that (i, j) itself either is or isn’t an inversion. Swapping them thus
either removes or adds one inversion, changing the parity of the permutation.

18.33 We saw one approach in Chapter 12 using divide and conquer. The one that’s used in
practice is the following. For each element, you want to compute the number of elements
to the left of it that are also greater than the element. Go through the permutation one
element at a time. Keep a segment tree T where T[x] = 1if you have seen the element x so
far. When you see x, add Y% _,, T[] to the number of inversions and add one to T[x].
18.34 You already know that each 3 x 3 subgrid can be transformed to any subgrid, except
that two elements might be swapped. In particular, this means that the first either 2 rows
or 2 columns can be transformed into anything. This allows you to first iteratively solve
all rows except the bottom one. Then, use the same method on the bottom 3 columns
left-to-right, which leaves you only with a scrambled 3 x 3 subgrid in the bottom-right
corner. Assuming the parity of the overall grid permutations was correct, that subgrid can
also be sorted.

18.35 A cycle of length [can be transformed to the identity permutation with [— 1 swaps.
The number of swaps is then even if and only if it has an even number of even-length
cycles, but the parity of number of swaps is also that of the permutation.

18.36 Swapping the first two elements of the permutation gives you a bijection between
odd and even permutations.

434

SOLUTIONS

CHAPTER 19

435

SOLUTIONS

436

Bibliography

(1]

(2]

[10]

(11]

[12]

(13]

Noga Alon, Raphy Yuster, and Uri Zwick. Color-coding: A new method for finding
simple paths, cycles and other small subgraphs within large graphs. In Proceedings of
the Twenty-Sixth Annual ACM Symposium on Theory of Computing, STOC ’94, page
326-335, New York, NY, USA, 1994. Association for Computing Machinery.

Sanjeev Arora and Boaz Barak. Computational Complexity: A Modern Approach.
Cambridge University Press, 2009.

Bengt Aspvall, Michael F. Plass, and Robert Endre Tarjan. A linear-time algorithm
for testing the truth of certain quantified boolean formulas. Information Processing
Letters, 8(3):121-123, 1979.

David Beazley and Brian K. Jones. Python Cookbook. O’Reilly, 2013.

Richard Bellman. On a routing problem. Quarterly of Applied Mathematics, 16(1):87-
90, 1958.

Elywn R. Berlekamp, John H. Conway, and Richard K. Guy. Winning Ways for Your
Mathematical Plays: Volume 1. Number v. 1. CRC Press, 2018.

Joshua Bloch. Effective Java. Pearson Education, 2008.

Robert S. Boyer and Strother]. Moore. MJRTY—A Fast Majority Vote Algorithm,
pages 105-117. Springer Netherlands, Dordrecht, 1991.

Xuan Cai. Canonical coin systems for change-making problems. In 2009 Ninth
International Conference on Hybrid Intelligent Systems, volume 1, pages 499-504, Aug
2009.

John H. Conway. On Numbers and Games. Ak Peters Series. Taylor & Francis, 2000.

Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford Stein.
Introduction to Algorithms. The MIT Press, 3rd edition, 2009.

Marek Cygan, Fedor V. Fomin, Lukasz Kowalik, Daniel Lokshtanov, Déniel Marx,
Marcin Pilipczuk, Michat Pilipczuk, and Saket Saurabh. Parameterized Algorithms.
Springer, 2015.

Reinhard Diestel. Graph Theory. Springer, 2016.

437

BIBLIOGRAPHY

(14]

(15]

[16

—_

—

(17

[27]

[28

—_—

[29]

438

Edsger W. Dijkstra. A note on two problems in connexion with graphs. Numer.
Math., 1(1):269-271, dec 1959.

Jack Edmonds and Richard M. Karp. Theoretical improvements in algorithmic
efficiency for network flow problems. Journal of the ACM, 19(2):248 — 264, 1972.

Philippe Flajolet and Robert Sedgewick. Analytic Combinatorics. Cambridge Univer-
sity Press, 20009.

Philippe Flajolet and Robert Sedgewick. An Introduction to the Analysis of Algorithms.
Addison-Wesley, 2013.

Robert W. Floyd. Algorithm 97: Shortest path. Communications of the ACM, 5(6):345
- N-PAG, 1962.

Fedor V. Fomin and Dieter Kratsch. Exact Exponential Algorithms. Springer, 2010.

Ralph P. Grimaldi. Discrete and Combinatorial Mathematics: An Applied Introduction.
Pearson Education, 2003.

Patrick M. Grundy. Mathematics and games. Eureka, 2:6-8, 1939.

Godfrey H. Hardy and Edward M. Wright. An Introduction to the Theory of Numbers.
Oxford University Press, 2008.

C. Antony R. Hoare. Algorithm 65: Find. Communications of the ACM, 4(7):321-322,
jul 1961.

Michael Huth. Logic in Computer Science. Cambridge University Press, 2004.

Donald B. Johnson. A note on dijkstra’s shortest path algorithm. Journal of the ACM,
20(3):385 - 388, 1973.

Ellis L. Johnson. On shortest paths and sorting. In Proceedings of the ACM Annual
Conference - Volume 1, ACM 72, page 510-517, New York, NY, USA, 1972. Association
for Computing Machinery.

Anatoly Karatsuba and Yuri Ofman. Multiplication of Multidigit Numbers on Au-
tomata. Soviet Physics Doklady, 7:595, January 1963.

Donald E. Knuth. The Art of Computer Programming, Volume 4A: Combinatorial
Algorithms, Part 1. Number del 1. Pearson Education, 2014.

Donald E. Knuth, Oren Patashnik, and Ronald Graham. Concrete Mathematics: A
Foundation for Computer Science. Addison-Wesley, 1994.

BIBLIOGRAPHY

[45]

[46]

[47]

Lazlé Lovész. Combinatorial Problems and Exercises. AMS/Chelsea publication.
North-Holland Publishing Company, 1993.

George S. Lueker. Two NP-complete problems in nonnegative integer programming.
1975.

Robert C. Martin. Clean Code: A Handbook of Agile Software Craftsmanship. Pearson
Education, 2009.

Steve McConnell. Code Complete: A Practical Handbook of Software Construction.
Microsoft Press, 2004.

Scott Meyers. Effective STL. O'Reilly, 2001.
Scott Meyers. Effective C++. O’Reilly, 2005.
Scott Meyers. Effective Modern C++. O’Reilly, 2014.

Gary L. Miller. Riemann’s hypothesis and tests for primality. In Proceedings of the
Seventh Annual ACM Symposium on Theory of Computing, STOC 75, page 234-239,
New York, NY, USA, 1975. Association for Computing Machinery.

J. Misra and David Gries. Finding repeated elements. Science of Computer Program-
ming, 2(2):143-152, 1982.

Christos Papadimitriou. Computational Complexity. Addison-Wesley, 1994.
Charles Petzold. CODE. Microsoft Press, 2000.

Michael O. Rabin. Probabilistic algorithm for testing primality. Journal of Number
Theory, 12(1):128-138, 1980.

Bernard Roy. Transitivité et connexité. Comptes Rendus Hebdomadaires Des Seances
De L Academie Des Sciences, 249(2):216-218, 1959.

Stuart Russell and Peter Norvig. Artificial Intelligence: A Modern Approach. Always
learning. Pearson, 2016.

Alfonso Shimbel. Structure in communication nets. In Proceedings of the symposium
on information networks, New York, April, 1954, 1955.

Victor Shoup. A Computational Introduction to Number Theory and Algebra. Cam-
bridge University Press, 2008.

Brett Slatkin. Effective Python. Addison-Wesley, 2015.

Michael Spivak. Calculus. Springer, 1994.

439

BIBLIOGRAPHY

(48]

[49]

[50]

[54]

(55]

[60]

440

Roland Sprague. Uber mathematische kampfspiele. Tohoku Mathematical Journal,
First Series, 41:438-444, 1935.

Richard P. Stanley and Gian-Carlo Rota. Enumerative Combinatorics: Volume 1.
Cambridge Studies in Advanced Mathematics. Cambridge University Press, 1997.

Volker Strassen. Gaussian elimination is not optimal. Numerische Mathematik,
13:354-356, 1969.

Bjarne Stroustrup. The C++ Programming Language. Addison-Wesley, 2013.

Robert Endre Tarjan. Depth-first search and linear graph algorithms. SIAM Journal
on Computing, 1(2):146-160, 1972.

Jeftrey Ullman and John Hopcroft. Introduction to Automata Theory, Languages, and
Computation. Pearson Education, 2014.

Jacobus Hendricus van Lint and Richard M. Wilson. A Course in Combinatorics.
Cambridge University Press, 2001.

John von Neumann and Oskar Morgenstern. Theory of Games and Economic Behavior:
6oth Anniversary Commemorative Edition. Princeton Classic Editions. Princeton
University Press, 2007.

Stephen Warshall. A theorem on boolean matrices. J. ACM, 9(1):11-12, jan 1962.
Mark A. Weiss. Data Structures and Algorithm Analysis in C++. Pearson, 2013.
Herbert S. Wilf. Generatingfunctionology. Elsevier Science, 2014.

Mingyu Xiao and Hiorshi Nagamochi. A refined algorithm for maximum indepen-
dent set in degree-4 graphs. Journal of Combinatorial Optimization, 34(3):830-873,
Oct 2017.

Mingyu Xiao and Hiroshi Nagamochi. Exact algorithms for maximum independent
set. Information and Computation, 255:126-146, 2017.

Index

K,, 107
2-connected, 263

accepted, 10
addition principle, 341
adjacency lists, 111
adjacency map, 112
adjacency matrix, 111
adjacent

vertex, 108
algorithm, 4
alpha-beta pruning, 298
amortized complexity, 73
and operator, 21
approximations, 171
array, 31
articulation point, 263
assignment, 14
assignment operator, 15
asymptotic notation, 70
auto, 17

backtracking, 136
BFS, 115
biconnected, 263
component, 263
bijection, 346
bijective function, 401
binary search, 208
over the answer, 211
binary tree, 83
binomial coefficient, 351
bipartite matching, 284
bitset, 87
bitwise operation

and, 88

exclusive or, 88

or, 88
boolean, 17
breadth-first search, 115
break statement, 24
bridge, 263
brute force, 133

centroid, 216
centroid decomposition, 221
change-making, 153, 173
char, 16

Chinese remainder theorem

general moduli, 333
clique, 134
closed interval, 401
codomain

of a function, 401
coin change, 153
combinatorial game, 287
combinatorics, 341
comment, 13
common divisor

greatest, 318
comparison operators, 21
compiler, 11
complement set, 400
complete graph, 107
composite number, 311
computational problem, 3
congruence, 329
connected

component, 121

graph, 121

441

INDEX

connected graph
semi-strongly, 269
strongly, 267
connectivity, 120
construction
greedy, 166
constructor, 29
container, 37
continue statement, 24
correctness, 6
covering
of an interval, 165
cutvertex, 263
cycle, 119
cycle decomposition, 347
cyclic game, 298

DAG, 128, 175
data structure, 77
degree

of vertex, 108
dense graph, 111
depth to win, 299
derangement, 363
diameter, 124
difference

of sets, 400
digit DP, 187
Dijkstra’s algorithm, 243
directed acyclic graph, 128
directed graph, 110
disjoint sets, 400
distance

in graph, 113
divide and conquer, 201
divides exactly, 315
divisibility, 305
divisor, 305
divisors

average number of, 310

442

domain
of a function, 401
double, 17
Dyck path, 354
dynamic array, 78
dynamic programming, 175
on digits, 187
on intervals, 183
on subset, 185
on trees, 189

edge, 107
element, 399
endpoint

of an edge, 107
Eratosthenes’ sieve, 317
Euclidean algorithm, 324
Euler’s totient function, 335
even permutation, 368
exchange argument, 159
exponentiation by squaring, 331
extended Euclidean algorithm, 324
extreme value, 156

factorial, 345

Fermat’s Theorem, 337
finite game, 288
fixed-size array, 77
fixing parameters, 144
Fleury’s algorithm, 258
float, 17

flow network, 279

for loop, 23

forest, 124

function, 25, 401

game, 287

game graph, 296
generate and test, 133
getline, 49

global variable, 27

INDEX

graph, 107
of a game, 296
greatest common divisor, 318

half-open, 401
Hamiltonian cycle, 133
hash function, 89

hash table, 89

hashing, 89

heap, 84

Hierholzer’s algorithm, 258

identity permutation, 346
if statements, 22
image, 401
immutable, 14
in-edge, 110
inclusion-exclusion, 361
indegree, 110
independent set, 141
injective function, 401
input, 18
input description, 3
insertion sort, 67
instance

of structure, 28

of problem, 3
int, 16
intersection

of sets, 400
interval, 401

covering, 165

scheduling, 162
interval DP, 183
invariant

in games, 290
inverse

of a function, 401
inversion in a permutation, 367
iteration, 24
iterator, 40

judgment, 9

Kattis, 9

KMP, 382

knapsack, 193
Knuth-Morris-Pratt, 382
Kruskal’s algorithm, 271

lambda, 33
leaf, 124
leaf centroid, 216
least common multiple, 323
length

of path, 113
linear combination, 324
linear Diophantine equation, 324
locally optimal, 155
long long, 16
longest common subsequence, 195
longest common substring, 195
longest increasing subsequence, 196
longest path

in a DAG, 175
lower bound, 47
lowest common ancestor, 217

main function, 13

map, 43

maximum matching, 284
measure, 159

meet in the middle, 147
member, 399

member function, 28
member variable, 28
memoization, 177
memory complexity, 74
memory limit, 9

merge sort, 206
Miller-Rabin, 334
minimax, 301

minimum spanning tree, 271

443

INDEX

misere game, 288

modular inverse, 329

modulo, 19, 329

monovariant, 368

multinomial coefficient, 357
multiplication by doubling, 330
multiplication principle, 342
multiplicative function, 336

negation, 21
neighbor, 108
next_permutation, 47
normal game, 288
NP-complete, 74

odd permutation, 368
online judge, 9
open, 401
operator, 19
operator overloading, 31
optimization problem, 133
or operator, 21
oracle, 75
order

of a permutation, 348
ordered k-subsets, 350
orientation

of a graph, 266
out-edge, 110
outdegree, 110
output, 18
output description, 3
overlapping subproblem, 174

pair, 37
parallel edge, 111
parameter fixing, 144
parity of a permutation, 367
partial correctness, 6
path, 113

shortest, 113

444

periodicity
in games, 289
permutation, 47, 345, 346
cycles, 347
identity, 346
inversion, 367
multiplication, 347
order, 348
parity, 367
precision, 50
Prim’s algorithm, 271
primality, 334
prime factorization, 314
prime number, 311
principle of inclusion and exclusion, 361
priority queue, 42, 83
problem, 3
problem instance, 3
product operator, 402
programming language, 7
proper divisor, 307
pruning, 137
pseudo code, 8

query complexity, 75
queue, 41, 82
quotient, 328

Rabin-Karp, 385
recursion, 95, 174

time complexity, 98
recursive construction, 201
recursive definition, 95
reference, 27
remainder, 328
return statement, 26
rooted tree, 126
run-time error, 9

scheduling, 162
search problem, 133

INDEX

self-loop, 111
semi-strongly connected, 269
sequence, 401
set, 43,399
set cover, 197
shortest path, 113
shortest-path tree, 248
sieve of Eratosthenes, 317
sieving, 311
simple graph, 107
sorting problem, 3
spanning tree, 124
sparse graph, 111
stable sort, 46
stack, 81
string, 16, 47
stringstream, 48
strongly connected graph, 267
structure, 28
subarray, 401
sublist, 401
subsequence, 401
subset, 400
subset DP, 185
subset sum, 194
sum operator, 402
surjective, 401
symmetry

in games, 292

terminal position, 288
test data, 9
time complexity, 67
in recursion, 98
time limit, 9
time limit exceeded, 9
topological ordering, 127, 176
topological sorting, 128
total correctness, 6
totient function, 335

tournament, 129
traveling salesman problem, 133, 186

tree, 124

rooted, 126
tree DP, 189
trial division, 315
trie, 375
trivial divisor, 307
TSP, 186
two-connected graph, 214
type

of a variable, 14
typedef, 17
union

of sets, 400

universal hashing, 91
upper bound, 47

variable, 14

variable declaration, 14
vector, 38

vertex, 107

Visual Studio Code, 11

weighted graph, 110
while loop, 25
worst-case, 68
wrong answetr, 9

Xor, 88

Zermelo's Theorem, 289

445

	Introduction
	I Preliminaries
	Algorithms and Problems
	Computational Problems
	Algorithms
	Programming Languages
	Pseudo Code
	Online Judges

	Programming in C++
	Hello World!
	Variables and Types
	Input and Output
	Operators
	If Statements
	For Loops
	While Loops
	Functions
	Structures
	Arrays
	Lambdas
	The Preprocessor

	The C++ Standard Library
	Data Structures
	Math
	Algorithms
	Strings
	Input/Output

	Implementation Problems
	Structuring your Code

	Time Complexity
	The Complexity of Insertion Sort
	Asymptotic Notation
	NP-complete Problems
	Other Types of Complexities
	The Importance of Constant Factors

	Data Structures
	Dynamic Arrays
	Stacks
	Queues
	Priority Queues
	Bitsets
	Hash Tables

	Recursion
	Recursive Definitions
	The Time Complexity of Recursive Functions
	Choice
	Multidimensional Recursion
	Recursion vs. Iteration

	Graph Theory
	Graphs
	Representing Graphs
	Breadth-First Search
	Depth-First Search
	Trees
	Topological Sorting

	II Common Techniques
	Brute Force
	Generate and Test
	Backtracking
	Parameter Fixing
	Meet in the Middle

	Greedy Algorithms
	Locally Optimal Choices
	Extreme Values
	Sorting and Exchanges
	Intervals
	Constructions

	Dynamic Programming
	Making Change Revisited
	Paths in a DAG
	Standard Techniques
	Standard Problems

	Divide and Conquer
	Recursive Constructions
	Sequences
	Binary Search
	Centroids

	Data Structures
	Union-Find
	Range Queries
	Sliding Windows

	III Other Topics
	Graph Algorithms
	Weighted Shortest Path
	Eulerian Walks
	The Depth-First Search
	Minimum Spanning Trees

	Maximum Flows
	Flow Networks
	Edmonds-Karp
	Applications of Flows

	Game Theory
	Combinatorial Games
	Mathematical Techniques
	Game Graphs
	Cyclic Games
	Minimax

	Number Theory
	Divisibility
	Prime Numbers
	The Euclidean Algorithm
	Modular Arithmetic
	Euler's Totient Function

	Combinatorics
	The Addition and Multiplication Principles
	Permutations
	Ordered and Unordered Subsets
	The Principle of Inclusion and Exclusion
	Invariants

	Strings
	Tries
	String Matching
	Hashing

	Competition Strategy
	IOI
	ICPC

	Mathematical Notation
	Sets
	Functions
	Sequences and Intervals
	Sums and Products

	Hints
	Solutions
	Bibliography
	Index

